Math 1431
 Section 16679

Bekki George: rageorge@central.uh.edu
University of Houston
08/27/19

Office Hours: Tuesdays \& Thursdays 11:45-12:45
(also available by appointment)
Office: 218C PGH
Course webpage: www.casa.uh.edu

Questions

Section 1.3 - Definition of Limit and Arithmetic Rules

Suppose we want to find the distance between two numbers a and b on the number line. How do we represent this distance mathematically?

Section 1.3 - Definition of Limit and Arithmetic Rules

When we discuss limits, we say we want x to be arbitrarily close to a but it doesn't have to equal a.

How can we represent this mathematically?

Section 1.3 - Definition of Limit and Arithmetic Rules

Once we are "close enough" to x, we find our limit by looking at what our y values are close to. (Remember, $y=f(x)$).

Let L represent our answer for the limit and let ϵ be our distance that is "close enough". In mathematical terms, we will write this as:

Section 1.3 - Definition of Limit and Arithmetic Rules

The formal definition of a limit

Let f be a function defined on the intervals $(c-\delta, c)$ and $(c, c+\delta)$, where $\delta>0$.

$$
\lim _{x \rightarrow c} f(x)=L
$$

if and only if for each $\epsilon>0$, there exists a $\delta>0$ such that
if

$$
0<|x-c|<\delta
$$

then

$$
|f(x)-L|<\epsilon
$$

Section 1.3 - Definition of Limit and Arithmetic Rules

Section 1.3 - Definition of Limit and Arithmetic Rules

Section 1.3 - Definition of Limit and Arithmetic Rules

Example: Show that $\lim _{x \rightarrow 2}(3 x+5)=11$ using the definition of limit.

Section 1.3 - Definition of Limit and Arithmetic Rules

Example: Give the largest δ that works with $\epsilon=0.1$ for the limit

$$
\lim _{x \rightarrow-1}(1-2 x)=3
$$

Section 1.3 - Definition of Limit and Arithmetic Rules

Example: Give the largest δ that works with $\epsilon=0.1$ for the limit

$$
\lim _{x \rightarrow 3}(4 x-5)=7
$$

Section 1.3 - Definition of Limit and Arithmetic Rules

You try: Give the largest δ that works with $\epsilon=0.02$ for the limit

$$
\lim _{x \rightarrow-1}(2 x+5)=3
$$

Section 1.3 - Definition of Limit and Arithmetic Rules

Formal definitions for Left-handed and Right-handed limits:

Let f be a function defined on the interval $(c-\delta, c)$, where $\delta>0$.

$$
\lim _{x \rightarrow c-} f(x)=L
$$

if and only if for each $\epsilon>0$, there exists a $\delta>0$ such that if $c-\delta<x<c$ then $|f(x)-L|<\epsilon$.

Let f be a function defined on the interval $(c, c+\delta)$, where $\delta>0$.

$$
\lim _{x \rightarrow c+} f(x)=L
$$

if and only if for each $\epsilon>0$, there exists a $\delta>0$ such that if $c<x<c+\delta$ then $|f(x)-L|<\epsilon$.

Section 1.3 - Definition of Limit and Arithmetic Rules

Recall:
Let $P(x)$ and $Q(x)$ be polynomial functions and let a be a real number. Then,

$$
\lim _{x \rightarrow a} \frac{P(x)}{Q(x)}= \begin{cases}\frac{P(a)}{Q(a)} & \text { if } Q(a) \neq 0 \\ \text { undefined } & \text { if } P(a) \neq 0 \text { and } Q(a)=0\end{cases}
$$

If $P(a)$ and $Q(a)$ both equal 0 then more work is required.

Section 1.3 - Definition of Limit and Arithmetic Rules

Techniques to evaluate limits:

- direct substitution
- cancellation
- rationalization
- algebraic simplification

Section 1.3 - Definition of Limit and Arithmetic Rules

Examples:
(1) $\lim _{x \rightarrow 4} \sqrt{x^{2}-3}=$
(2) $\lim _{x \rightarrow 2} \frac{x-2}{x^{3}-8}=$

Section 1.3 - Definition of Limit and Arithmetic Rules

(3) $\lim _{x \rightarrow-1} \frac{x^{2}+x}{x^{2}-1}=$

Section 1.3 - Definition of Limit and Arithmetic Rules

(1) $\lim _{x \rightarrow 1} \frac{x^{2}+x}{x^{2}-1}=$

Section 1.3 - Definition of Limit and Arithmetic Rules

(6) $\lim _{x \rightarrow 3} \frac{\sqrt{x+1}-2}{x-3}=$

Section 1.3 - Definition of Limit and Arithmetic Rules

($\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+1}-\sqrt{2}}{x-1}=$

Section 1.3 - Definition of Limit and Arithmetic Rules

(3) If $g(x)=\left\{\begin{array}{ll}\frac{3 x-6}{x-2} & x \neq 2 \\ 10 & x=2\end{array}\right.$, find $\lim _{x \rightarrow 2} g(x)$

Section 1.3 - Definition of Limit and Arithmetic Rules

(8) $\lim _{x \rightarrow 0} \frac{\frac{1}{x+4}-\frac{1}{4}}{x}=$

Section 1.3 - Definition of Limit and Arithmetic Rules

Limits as $x \rightarrow \infty$

- $\lim _{x \rightarrow \infty} \frac{1}{x}=$
- $\lim _{x \rightarrow \infty} \frac{1}{x^{2}}=$
- $\lim _{x \rightarrow \infty} \frac{1}{x^{n}}=$

Section 1.3 - Definition of Limit and Arithmetic Rules

Examples:
(1) $\lim _{x \rightarrow \infty} \frac{2 x^{2}-3 x+1}{4 x-x^{2}}=$

Section 1.3 - Definition of Limit and Arithmetic Rules

(2) $\lim _{x \rightarrow-\infty} \frac{2 x^{2}-x+5}{x^{3}+x^{2}+1}=$

Section 1.3 - Definition of Limit and Arithmetic Rules

- $\lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+4}{\sqrt{x^{4}+3 x^{2}+8}}=$

Section 1.3 - Definition of Limit and Arithmetic Rules

(1) $\lim _{x \rightarrow \infty} \arctan (x)=$
(6) $\lim _{x \rightarrow-\infty} \arctan (x)=$

Section 1.6 - The Pinching Theorem; Trig Limits

Suppose $f(x), g(x)$ and $h(x)$ are defined on an open interval containing $x=c$ (except possibly at $x=c$).

If $f(x) \leq g(x) \leq h(x)$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L$, then $\lim _{x \rightarrow c} g(x)=L$.

Figure 2.5. 1

Section 1.6 - The Pinching Theorem; Trig Limits

Note: Trigonometric functions are continuous on their domain:

$$
\lim _{x \rightarrow c} \sin (x)=\sin (c) \quad \lim _{x \rightarrow c} \cos (x)=\cos (c)
$$

Also, recall:

$$
\sin (0)=0 \text { and } \cos (0)=1
$$

In the posted video, I use the Pinching Theorem to show:

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

Section 1.6 - The Pinching Theorem; Trig Limits

For any number $a \neq 0$, we have:

$$
\lim _{x \rightarrow 0} \frac{\sin (a x)}{a x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{1-\cos (a x)}{a x}=0
$$

Section 1.6 - The Pinching Theorem; Trig Limits

Examples:
(1) $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{5 x}=$
(2) $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x}=$
(3) $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{2 x}=$

Section 1.6 - The Pinching Theorem; Trig Limits

For any number $a \neq 0$, we have:

$$
\lim _{x \rightarrow 0} \frac{\sin (a x)}{a x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{1-\cos (a x)}{a x}=0
$$

Section 1.6 - The Pinching Theorem; Trig Limits

More examples:
(1) $\lim _{x \rightarrow 0} \frac{x}{\sin (x)}=$
(2) $\lim _{x \rightarrow \pi / 4} \frac{\sin (2 x)}{x}=$
(3) $\lim _{x \rightarrow 0} \frac{1-\cos (3 x)}{x}=$

