Math 1431
 Section 16679

Bekki George: rageorge@central.uh.edu
 University of Houston

08/29/19

Office Hours: Tuesdays \& Thursdays 11:45-12:45
(also available by appointment)
Office: 218C PGH
Course webpage: www.casa.uh.edu

Section 1.3 - Definition of Limit and Arithmetic Rules

You try: Give the largest δ that works with $\epsilon=0.02$ for the limit

$$
\lim _{x \rightarrow-1}(2 x+5)=3
$$

Questions

Section 1.3 - Definition of Limit and Arithmetic Rules

(3) If $g(x)=\left\{\begin{array}{ll}\frac{3 x-6}{x-2} & x \neq 2 \\ 10 & x=2\end{array}\right.$, find $\lim _{x \rightarrow 2} g(x)$

Section 1.3 - Definition of Limit and Arithmetic Rules

(8) $\lim _{x \rightarrow 0} \frac{\frac{1}{x+4}-\frac{1}{4}}{x}=$

Section 1.3 - Definition of Limit and Arithmetic Rules

Limits as $x \rightarrow \infty$

- $\lim _{x \rightarrow \infty} \frac{1}{x}=$
- $\lim _{x \rightarrow \infty} \frac{1}{x^{2}}=$
- $\lim _{x \rightarrow \infty} \frac{1}{x^{n}}=$

Section 1.3 - Definition of Limit and Arithmetic Rules

Examples:
(1) $\lim _{x \rightarrow \infty} \frac{2 x^{2}-3 x+1}{4 x-x^{2}}=$

Section 1.3 - Definition of Limit and Arithmetic Rules

(2) $\lim _{x \rightarrow-\infty} \frac{2 x^{2}-x+5}{x^{3}+x^{2}+1}=$

Section 1.3 - Definition of Limit and Arithmetic Rules

- $\lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+4}{\sqrt{x^{4}+3 x^{2}+8}}=$

Section 1.3 - Definition of Limit and Arithmetic Rules

(1) $\lim _{x \rightarrow \infty} \arctan (x)=$
(6) $\lim _{x \rightarrow-\infty} \arctan (x)=$

Section 1.6 - The Pinching Theorem; Trig Limits

Suppose $f(x), g(x)$ and $h(x)$ are defined on an open interval containing $x=c$ (except possibly at $x=c$).

If $f(x) \leq g(x) \leq h(x)$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L$, then $\lim _{x \rightarrow c} g(x)=L$.

Figure 2.5. 1

Section 1.6 - The Pinching Theorem; Trig Limits

Note: Trigonometric functions are continuous on their domain:

$$
\lim _{x \rightarrow c} \sin (x)=\sin (c) \quad \lim _{x \rightarrow c} \cos (x)=\cos (c)
$$

Also, recall:

$$
\sin (0)=0 \text { and } \cos (0)=1
$$

In the posted video, I use the Pinching Theorem to show:

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

Section 1.6 - The Pinching Theorem; Trig Limits

For any number $a \neq 0$, we have:

$$
\lim _{x \rightarrow 0} \frac{\sin (a x)}{a x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{1-\cos (a x)}{a x}=0
$$

Section 1.6 - The Pinching Theorem; Trig Limits

Examples:
(1) $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{5 x}=$
(2) $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x}=$
(3) $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{2 x}=$

Section 1.6 - The Pinching Theorem; Trig Limits

For any number $a \neq 0$, we have:

$$
\lim _{x \rightarrow 0} \frac{\sin (a x)}{a x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{1-\cos (a x)}{a x}=0
$$

Section 1.6 - The Pinching Theorem; Trig Limits

More examples:
(1) $\lim _{x \rightarrow 0} \frac{x}{\sin (x)}=$
(2) $\lim _{x \rightarrow \pi / 4} \frac{\sin (2 x)}{x}=$
(3) $\lim _{x \rightarrow 0} \frac{1-\cos (3 x)}{x}=$

Section 1.4 - Continuity

Continuity

A function f is said to be continuous at a point c if
(1) $f(c)$ is defined.
(2) $\lim _{x \rightarrow c} f(x)$ exists.
(3) $\lim _{x \rightarrow c} f(x)=f(c)$.

Section 1.4 - Continuity

Can you give an example of a function where step 1 fails but step 2 doesn't fail?

Section 1.4 - Continuity

Can you give an example of a function where step 2 fails but step 1 doesn't fail?

Section 1.4 - Continuity

Can you give an example of a function where step 3 fails but steps 1 and 2 don't fail?

Section 1.4 - Continuity

Types of discontinuity at a point

© Removable:

(2) Non-Removable - Jump:

Section 1.4 - Continuity

Types of discontinuity at a point
(3) Non-Removable - Infinite:

Section 1.4 - Continuity

If functions f and g are continuous at the point $x=c$, then
(1) $f+g$ is continuous at c
(2) $f-g$ is continuous at c
(3) αf is continuous at c for each real number α
(1) $f \cdot g$ is continuous at c
(6) $\frac{f}{g}$ is continuous at c provided $g(c) \neq 0$

Lastly, - If g is continuous at c and f is continuous at $g(c)$, then the composition $f \circ g$ is continuous at c.

Section 1.4 - Continuity

Where are polynomials continuous?

Where are rational functions continuous?

Section 1.4 - Continuity

There is also One-Sided Continuity
A function is continuous from the left at c if $\lim _{x \rightarrow c-} f(x)=f(c)$
and
it is continuous from the right at c if $\lim _{x \rightarrow c+} f(x)=f(c)$

Section 1.4 - Continuity

Examples: Discuss the continuity for each function.
(1) $f(x)=\frac{x+2}{x^{2}-x-6}$

Section 1.4 - Continuity

(2) $f(x)=\frac{x^{2}+2 x}{x^{2}-4}$

Section 1.4 - Continuity

(3) $f(x)=\frac{x+5}{x^{2}+5}$

Section 1.4 - Continuity

- $f(x)=\frac{x+5}{x^{2}+5 x}$

Section 1.4 - Continuity

- $f(x)=\sqrt{x-3}$

Section 1.4 - Continuity

- $f(x)=\frac{\sqrt{x}-1}{x^{2}+4 x-5}$

Section 1.4 - Continuity

- $f(x)= \begin{cases}x^{3} & x<1 \\ \sqrt{x} & x \geq 1\end{cases}$

Section 1.4 - Continuity

(8) $f(x)= \begin{cases}6 & x \leq-2 \\ -6 & x>-2\end{cases}$

Section 1.4 - Continuity

(-) $g(x)= \begin{cases}x+2 & x<-2 \\ \sqrt{4-x^{2}} & -2 \leq x<2 \\ 1 & x=2 \\ x-2 & x>2\end{cases}$

Section 1.4 - Continuity

(10) Find c so that $h(x)$ is continuous. $h(x)= \begin{cases}2 x-3 & x<2 \\ c x-x^{2} & x \geq 2\end{cases}$

Section 1.4 - Continuity

Some more

(1) Determine if the following function is continuous at the point where $\mathrm{x}=3$.

$$
g(x)= \begin{cases}2 x^{2}+9 & x<3 \\ 27 & x=3 \\ x^{3} & x>3\end{cases}
$$

Section 1.4 - Continuity

(2) Discuss the continuity of $f(x)= \begin{cases}-x^{2} & x<-1 \\ 3 & x=-1 \\ 2-x & -1<x \leq 1 \\ \frac{1}{x^{2}} & x>1\end{cases}$

Section 1.4 - Continuity

(3) Find A and B so that $f(x)$ is continuous.

$$
f(x)= \begin{cases}2 x^{2}-1 & x<-2 \\ A & x=-2 \\ B x-3 & x>-2\end{cases}
$$

Section 1.5 - The Intermediate Value Theorem

A very important result of continuity is the Intermediate Value Theorem.

If $f(x)$ is continuous on the closed interval $[a, b]$ and K is a value between $f(a)$ and $f(b)$, then there is at least one value c in (a, b) such that $f(c)=K$.

Section 1.5 - The Intermediate Value Theorem

Examples:
Use the intermediate value theorem to show that there is a solution to the given equation in the indicated interval.
(1) $x^{2}-4 x+3=0$ on the interval $[2,4]$
(2) $x^{3}-6 x^{2}-x+2=0$ on the interval $[0,3]$

Section 1.5 - The Intermediate Value Theorem

(3) $2 \tan (x)-x=1$ on the interval $\left[0, \frac{\pi}{4}\right]$
(9) Show there is a value of x between 1 and 3 so that $-3 x^{3}+2 x^{4}=7$

Section 1.5 - The Intermediate Value Theorem

(0 Does the Intermediate Value Theorem guarantee a solution to $0=x^{2}+6 x+10$ on the interval $[-1,3]$?

Section 1.5 - The Intermediate Value Theorem

(0) Does the Intermediate Value Theorem guarantee a solution to $f(x)=0$ for $f(x)=2 \sin (x)-8 \cos (x)-3 x^{2}$ on the interval $\left[0, \frac{\pi}{2}\right]$?

Section 1.5 - The Intermediate Value Theorem

(1) Verify that the IVT applies to this function on the indicated interval and find the value of c guaranteed by the theorem. $f(x)=x^{2}-3 x+1$ on the interval $[0,6], f(c)=5$.

Section 1.5 - The Intermediate Value Theorem

The Intermediate Value Theorem also helps us solve polynomial and rational inequalities.

Examples:
(1) $(x+2)^{2}(3 x-2)(x-1)^{3} \leq 0$

Section 1.5 - The Intermediate Value Theorem

(2) $\frac{2 x-8 x^{2}}{(x+1)^{2}} \geq 0$

Section 1.5 - The Intermediate Value Theorem

(3) $\frac{1}{x-1}+\frac{1}{x+2}<0$

Section 1.5 - The Intermediate Value Theorem

- $\frac{4}{x+1}-\frac{3}{x+2} \geq 1$

Section 1.5 - The Intermediate Value Theorem

Why did we just work these problems?

Section 1.5 - The Intermediate Value Theorem

Why did we just work these problems?
These inequalities are able to be solved because of the Intermediate Value Theorem (IVT). The IVT basically states that if $f(x)$ is continuous from $x=a$ to $x=b$, then you must pass through all points $(x=" c ")$ plotted along the graph of $f(x)$.

Section 1.5 - The Intermediate Value Theorem

Why did we just work these problems?
These inequalities are able to be solved because of the Intermediate Value Theorem (IVT). The IVT basically states that if $f(x)$ is continuous from $x=a$ to $x=b$, then you must pass through all points $(x=" c ")$ plotted along the graph of $f(x)$.

Note: Functions with complex roots do not meet the requirements of the IVT. Why??

