Math 1431
 Section 16679

Bekki George: rageorge@central.uh.edu
University of Houston
$$
09 / 05 / 19
$$

Office Hours: Tuesdays \& Thursdays 11:45-12:45
(also available by appointment)
Office: 218C PGH
Course webpage: www.casa.uh.edu

Questions

Section 1.5 - The Intermediate Value Theorem

- $\frac{4}{x+1}-\frac{3}{x+2} \geq 1$

Popper 02

(1) The limit $\lim _{h \rightarrow 0} \frac{(1+h)^{5}-1}{h}$ represents the derivative of a function $f(x)$ at $x=1$. What is $f(x)$?

Section 2.1 - The Derivative

(6) Find the derivative of $f(x)=\frac{1}{x+1}$ using the definition of the derivative.

Section 2.1 - The Derivative

(2) Find the derivative of $f(x)=\sqrt{2 x+1}$ using the definition of the derivative.

Section 2.1 - The Derivative

If f is differentiable at $x=a$, then f is continuous at $x=a$.

Section 2.1 - The Derivative

If f is differentiable at $x=a$, then f is continuous at $x=a$.
However, not every continuous function is differentiable.
Example: The function $y=|x|$ is continuous but not differentiable at $x=0$.

Section 2.1 - The Derivative

The Weierstrass function is continuous everywhere and differentiable nowhere!

Section 2.1 - The Derivative

How can the graph of a function be used to determine where a function is not differentiable?

Section 2.1 - The Derivative

How can the graph of a function be used to determine where a function is not differentiable?

A function is not differentiable at

Section 2.1 - The Derivative

How can the graph of a function be used to determine where a function is not differentiable?

A function is not differentiable at

- points of discontinuity

Section 2.1 - The Derivative

How can the graph of a function be used to determine where a function is not differentiable?

A function is not differentiable at

- points of discontinuity
- cusps

Section 2.1 - The Derivative

How can the graph of a function be used to determine where a function is not differentiable?

A function is not differentiable at

- points of discontinuity
- cusps
- sharp turns (corners)

Popper 02

(2) If a function is continuous, then it is guaranteed to be differentiable.

Section 2.1 - The Derivative

Example: Determine if $f(x)$ is differentiable at $x=2$.
$g(x)= \begin{cases}x^{2}+1 & x \leq 2 \\ 4 x-3 & x>2\end{cases}$

Section 2.1 - The Derivative

Example: Determine if $f(x)$ is differentiable at $x=2$.
$g(x)= \begin{cases}x & x \leq 1 \\ x^{2} & x>1\end{cases}$

Section 2.1 - The Derivative

How can we use the derivative to find the slope of the normal line to the graph of $f(x)$ at $x=a$?

Section 2.1 - The Derivative

How can we use the derivative to find the slope of the normal line to the graph of $f(x)$ at $x=a$?

The normal line to the graph at $x=a$ is the perpendicular line to the graph at $x=a$.

Section 2.1 - The Derivative

How can we use the derivative to find the slope of the normal line to the graph of $f(x)$ at $x=a$?

The normal line to the graph at $x=a$ is the perpendicular line to the graph at $x=a$.

That is:
The normal line is perpendicular to the tangent line at $x=a$.

Section 2.1 - The Derivative

Example: Give the slope of the normal line to the graph of $f(x)=\frac{1}{2 x}$ at $x=-1$.

Popper 02

- Give the slope of the normal line to the graph of $f(x)=\frac{1}{x+1}$ at $x=3$. (Recall, $f^{\prime}(x)=-\frac{1}{(x+1)^{2}}$)

Popper 02

(9) Which of the following gives the first step for finding the derivative of $f(x)=2 \sqrt{x+1}$ using the definition of derivative?

Section 2.1 - The Derivative

Example: Determine if $f(x)$ is differentiable at $x=2$.
$g(x)= \begin{cases}x & x \leq 1 \\ x^{2} & x>1\end{cases}$

Section 2.1 - The Derivative

How can we use the derivative to find the slope of the normal line to the graph of $f(x)$ at $x=a$?

Section 2.1 - The Derivative

How can we use the derivative to find the slope of the normal line to the graph of $f(x)$ at $x=a$?

The normal line to the graph at $x=a$ is the perpendicular line to the graph at $x=a$.

Section 2.1 - The Derivative

How can we use the derivative to find the slope of the normal line to the graph of $f(x)$ at $x=a$?

The normal line to the graph at $x=a$ is the perpendicular line to the graph at $x=a$.

That is:
The normal line is perpendicular to the tangent line at $x=a$.

Section 2.1 - The Derivative

Example: Give the slope of the normal line to the graph of $f(x)=\frac{1}{2 x}$ at $x=-1$.

Popper 02

© Give the domain for $\frac{x^{2}-4}{x^{2}-3 x+2}$

