Math 1431
 Section 16679

Bekki George: rageorge@central.uh.edu
University of Houston
09/12/19

Office Hours: Tuesdays \& Thursdays 11:45-12:45
(also available by appointment)
Office: 218C PGH
Course webpage: www.casa.uh.edu

Questions

Popper 04

(1) Find the limit: $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-3 x+2}$

Popper 04

(2) Find the limit: $\lim _{x \rightarrow 1} \frac{x^{2}-4}{x^{2}-3 x+2}$

Popper 04

(3 Find $\lim _{x \rightarrow \infty} \frac{3 x^{2}-7 x+1}{1-x^{2}}$

Test 1 Review

Problems from review sheet:

Section 2.2 - Algebraic Properties of the Derivative

If f and g are differentiable and c is a scalar, then $f+g, f-g$ and $(c \cdot f)$ are differentiable. Furthermore,

Section 2.2 - Algebraic Properties of the Derivative

If f and g are differentiable and c is a scalar, then $f+g, f-g$ and $(c \cdot f)$ are differentiable. Furthermore,

The derivative of the sum is the sum of the derivatives:

$$
\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
$$

Section 2.2 - Algebraic Properties of the Derivative

If f and g are differentiable and c is a scalar, then $f+g, f-g$ and $(c \cdot f)$ are differentiable. Furthermore,

The derivative of the sum is the sum of the derivatives:

$$
\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
$$

The derivative of the difference is the difference of the derivatives:

$$
\frac{d}{d x}(f(x)-g(x))=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)
$$

Section 2.2 - Algebraic Properties of the Derivative

If f and g are differentiable and c is a scalar, then $f+g, f-g$ and $(c \cdot f)$ are differentiable. Furthermore,

The derivative of the sum is the sum of the derivatives:

$$
\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
$$

The derivative of the difference is the difference of the derivatives:

$$
\frac{d}{d x}(f(x)-g(x))=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)
$$

And the derivative of any scalar times a function is the scalar times the derivative of the function:

$$
\frac{d}{d x}(c \cdot f(x))=c \cdot \frac{d}{d x} f(x)
$$

Section 2.2 - Algebraic Properties of the Derivative

Examples:
(1) $\frac{d}{d x} 8=$
(2) $\frac{d}{d x} x=$
(3) $\frac{d}{d x}(5 x)=$
(1) $\frac{d}{d x}(5 x+2)=$

Section 2.2 - Differentiation Formulas

$$
\begin{gathered}
\text { The Power Rule: } \\
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}, n \neq 0
\end{gathered}
$$

Section 2.2 - Differentiation Formulas

The Power Rule:

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}, n \neq 0
$$

Examples:
(1) $\frac{d}{d x}\left(x^{3}\right)=$
(2) $\frac{d}{d x}\left(x^{5}-x^{2}\right)=$
(3) $\frac{d}{d x}\left(3 x^{4}+2 x^{3}-4 x\right)=$

Section 2.2 - Differentiation Formulas

More Examples: Find the derivative of each:
(1) $f(x)=\sqrt{x}$
(6) $f(x)=x^{9 / 7}+x^{5 / 7}$
(6) $y=\frac{1}{x^{2}}$

Popper 04

(1) Find the derivative of $f(x)=3 x^{2}+\sqrt{x}+x$.

Popper 04

(6) $f(x)=6 x^{2}-2 x+1, f^{\prime}(x)=$

