Math 1431
 Section 16679

Bekki George: rageorge@central.uh.edu
University of Houston
$$
09 / 19 / 19
$$

Office Hours: Tuesdays \& Thursdays 11:45-12:45
(also available by appointment)
Office: 218C PGH
Course webpage: www.casa.uh.edu

Questions

Section 2.3 - Differentiation Rules

Examples: Suppose

$$
\begin{array}{lll}
f(2)=7, & f^{\prime}(2)=1, & f(5)=4,
\end{array} \quad f^{\prime}(5)=3010, ~ g(5)=10, \quad g^{\prime}(5)=6
$$

(1) If $h(x)=(f g)(x)$, find $h^{\prime}(2)$.
(2) If $h(x)=\left(\frac{f}{g}\right)(x)$, find $h^{\prime}(2)$.

Section 2.3 - Differentiation Rules

Suppose

$$
\begin{array}{lll}
f(2)=7, & f^{\prime}(2)=1, & f(5)=4,
\end{array} f^{\prime}(5)=301+g^{\prime}(5)=6
$$

(3) If $h(x)=[f(x)]^{3}$, find $h^{\prime}(2)$.
(1) If $h(x)=(f \circ g)(x)$, find $h^{\prime}(2)$.

Quiz 8 Questions

3) Find $\frac{d^{2}}{d x^{2}}\left[\left(3 x^{2}+2 x\right) \cos (x)\right]$

Quiz 8 Questions

5) $\frac{d}{d x}\left(5 x \cdot \frac{d}{d x}\left(x-6 x^{2}\right)\right)=$

Quiz 8 Questions

$6)$ Find $\frac{d y}{d x}$ at $x=0$ given $y=\frac{1}{2+u^{2}}$ and $u=3 x+4$.

Quiz 8 Questions

8) Express the derivative $\frac{d}{d x}\left(f\left(3 x^{3}+7\right)\right)$ in terms of f^{\prime}.

Popper 06

(1) If $f(x)=g(x) \cdot h(x), f^{\prime}(x)=$.

Popper 06

(2) If $f(x)=\frac{g(x)}{h(x)}, f^{\prime}(x)=$.

Popper 06

(- If $f(x)=g(h(x)), f^{\prime}(x)=$.

Section 2.4 - Implicit Differentiation

What is the derivative of y with respect to x ?

What are the steps for finding $\frac{d y}{d x}$ using implicit differentiation?

Section 2.4 - Implicit Differentiation

Examples: Find $\frac{d y}{d x}$.
(3) $2 x^{3}+y^{2}=8$

Section 2.4 - Implicit Differentiation

Examples: Find $\frac{d y}{d x}$.
(1) $y^{3}+2 y^{2}-3 y+x=2$

Section 2.4 - Implicit Differentiation

Examples: Find the derivative.
(1) $\frac{d}{d x}\left(x^{3} y\right)$
(2) $\frac{d}{d x}\left(\sin \left(y^{2}\right)\right)$
(3) $\frac{d}{d x}\left(\sin ^{2}(y)\right)$

Section 2.4 - Implicit Differentiation

(1) $\frac{d^{2}}{d x^{2}}\left(2 x^{3} y\right)$

Popper 06

- $\frac{d}{d x}(x y)=$

Quiz 9 Questions

9) Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y given $-3 x^{2}+x y=11$.

Quiz 9 Questions

10) Find $\frac{d^{2} y}{d x^{2}}$ at the point $(1,3)$ given $x^{2}+y^{2}=10$.

Quiz 9 Questions

12) Find $\frac{d y}{d x}$ given $\frac{3 x}{\sqrt{x^{2}+4}}$

Section 3.1 - Related Rates

In this section we will use implicit differentiation on problems that involve rates of change with respect to time. Any variable that changes over time will be considered a function of time (t). We will be taking derivatives with respect to time $\left(\frac{d}{d t}\right)$.

Section 3.1 - Related Rates

First, let's review some geometry formulas:

- Pythagorean Thm: $a^{2}+b^{2}=c^{2}$
- Area of a circle: $A=\pi r^{2}$
- Area of a triangle: $A=\frac{1}{2} b h$
- Volume of a cone: $V=\frac{1}{3} \pi r^{2} h$
- Volume of a sphere: $V=\frac{4}{3} \pi r^{3}$

Section 3.1 - Related Rates

How to solve a related rates word problem:

- Draw a picture.
- Determine what you know and what you need to find.
- Write an equation involving the variables whose rates of change either are given or are to be determined. (This is an equation that relates the parts of the problem.)
- Implicitly differentiate both sides of the equation with respect to time. This FREEZES the problem.
- Solve for what you need.

Section 3.1 - Related Rates

Examples:
(1) Assume that oil spilled from a ruptured tanker spreads in a circular pattern whose radius increases at a constant rate of 2 $\mathrm{ft} / \mathrm{sec}$. How fast is the area of the spill increasing when the radius of the spill is 60 feet?

Section 3.1 - Related Rates

(2) A 5 foot ladder, leaning against a wall, slips so that its base moves away from the wall at a rate of $2 \mathrm{ft} / \mathrm{sec}$. How fast will the top of the ladder be moving down the wall when the base is 4 feet from the wall?

Popper 06

- $\frac{d}{d x}\left(\cos \left(x^{2}\right)\right)=$

