Math 1431
 Section 16679

Bekki George: rageorge@central.uh.edu
University of Houston
09/26/19

Office Hours: Tuesdays \& Thursdays 11:45-12:45
(also available by appointment)
Office: 218C PGH
Course webpage: www.casa.uh.edu

Questions

Popper 08

(1) Find the value of c such that $f^{\prime}(c)=2$ when $f(x)=\sqrt{x}-x$.

Section 3.2 - Mean Value Theorem

If f is continuous on the closed interval $[a, b]$ and differentiable on (a, b), then there exists a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

$($ slope of tangent line $)=($ slope of secant line $)$

Geometrically, the theorem says that here is at least one point $(c, f(c))$ on f at which the tangent line is parallel to the secant line through the points $(a, f(a))$ and $(b, f(b))$.

Section 3.2 - Mean Value Theorem

Section 3.2 - Mean Value Theorem

Examples of when the MVT does not apply:

Section 3.2 - Mean Value Theorem

Examples of when the MVT does not apply:

Section 3.2 - Mean Value Theorem

Examples:

Determine if the MVT applies and if it does, find all values of c on the interval (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
(1) $f(x)=x^{3}+x-4$ on $[-1,2]$

Section 3.2 - Mean Value Theorem

(2) $f(x)=\sqrt{x}$ on $[0,1]$

Section 3.2 - Mean Value Theorem

(3) $f(x)=\frac{1}{x-1}$ on $[2,5]$

Section 3.2 - Mean Value Theorem

(1) $f(x)=x^{2 / 3}$ on $[-8,8]$

Section 3.2 - Mean Value Theorem

(1) $f(x)=x^{2 / 3}$ on $[1,8]$

Popper 08

(2) Find all value(s) of c (if any) that satisfy the conclusion of the Mean Value Theorem for the function $f(x)=\frac{1}{x+1}$ on the interval $[-2,1]$.

Section 3.2 - Mean Value Theorem

(6 $f(x)=\frac{1}{x+1}$ on $[0,1]$

Section 3.2 - Rolle's Theorem

Rolle's Thm is a special case of the MVT. It states:
Let f be continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b).

If $f(a)=f(b)$ then there is at least one number c in (a, b) such that $f^{\prime}(c)=0$.

Section 3.2 - Rolle's Theorem

Rolle's Thm is a special case of the MVT. It states:
Let f be continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b).

If $f(a)=f(b)$ then there is at least one number c in (a, b) such that $f^{\prime}(c)=0$.

What does this mean?

Section 3.2 - Rolle's Theorem

Section 3.2 - Rolle's Theorem

Examples:
(1) Find the two x - intercepts of $f(x)=x^{2}-x-20$ and show using Rolle's theorem that $f^{\prime}(x)=0$ at some point between the two intercepts.

Popper 08

(3) Decide whether Rolle's Theorem can be applied to $f(x)=x^{2}+3 x$ on the interval $[0,2]$. If Rolle's Theorem can be applied, find all value(s) of c in the interval such that $f^{\prime}(c)=0$.

Popper 08

(1) Which of the following functions fails to satisfy the conditions of The Mean Value Theorem on the given interval?

Section 3.3 - Increasing and Decreasing Functions

Intuitively, where is f increasing?

Section 3.3 - Increasing and Decreasing Functions

Intuitively, where is f decreasing?

Section 3.3 - Increasing and Decreasing Functions

In plain terms, a function is increasing if, as x moves to the right, its graph moves up, and is decreasing if its graph moves down.

A function is strictly monotonic on an interval if it is either increasing on the entire interval or decreasing on the entire interval.

Since $f^{\prime}(a)$ gives us the slope of the tangent line to $f(x)$ at $x=a$, it follows that:
where $f^{\prime}(x)$ is positive, $f(x)$ is increasing and where $f^{\prime}(x)$ is negative, $f(x)$ is decreasing.

Section 3.3 - Increasing and Decreasing Functions

In math terms

Section 3.3 - Increasing and Decreasing Functions

In math terms
f is increasing over an interval I
if and only if
$f(a)<f(b)$
for all $a, b \in I$ with $a<b$.

Section 3.3 - Increasing and Decreasing Functions

In math terms
f is increasing over an interval I
if and only if
$f(a)<f(b)$
for all $a, b \in I$ with $a<b$.

Theorem: A function f is increasing on an interval I provided f is continuous and $f^{\prime}(x)>0$ at all but finitely many values in I.

Section 3.3 - Increasing and Decreasing Functions

And...
f is decreasing over an interval I
if and only if
$f(a)>f(b)$
for all $a, b \in I$ with $a<b$.

Section 3.3 - Increasing and Decreasing Functions

And...
f is decreasing over an interval I
if and only if
$f(a)>f(b)$
for all $a, b \in I$ with $a<b$.

Theorem: A function f is increasing on an interval I provided f is continuous and $f^{\prime}(x)<0$ at all but finitely many values in I.

Section 3.3 - Increasing and Decreasing Functions

Definition of Critical Number:
The numbers c in the domain of a function f for which either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist, are called the critical numbers of f.

The terms critical points and critical values are also used.

Section 3.3 - Increasing and Decreasing Functions

Examples:
(1) Find the critical numbers of $f(x)=3 x^{4}-4 x^{3}$.

Section 3.3 - Increasing and Decreasing Functions

(2) Find the critical numbers of $f(x)=\frac{x-1}{x-3}$.

Section 3.3 - Increasing and Decreasing Functions

(3) Find the critical numbers of $f(x)=\left(x^{2}-36\right)^{1 / 3}$.

Popper 08

- Find all critical numbers: $f(x)=\frac{1}{x^{2}-4}$

