Math 1431
 Section 16679

Bekki George: rageorge@central.uh.edu
 University of Houston

$$
10 / 03 / 19
$$

Office Hours: Tuesdays \& Thursdays 11:45-12:45
(also available by appointment)
Office: 218C PGH
Course webpage: www.casa.uh.edu

Questions

Section 3.4 - Extreme Values

Absolute Extreme Values

Let c be a point in the domain of $f ; c$ may be an interior point or an endpoint.

We say that f has an absolute minimum at c if $f(x) \geq f(c)$ for all x in the domain of f.
f has an absolute maximum at c if $f(x) \leq f(c)$ for all x in the domain of f.

Section 3.4 - Extreme Values

Finding the absolute minimum and maximum values of a continuous function defined on a closed bounded interval $[a, b]$:
(1) Find the critical points for f in the interval (a, b).
(2) Evaluate the function at each of these critical points and at the endpoints.
(3) The smallest of these computed values is the absolute minimum value, and the largest is the absolute maximum value of f.

Section 3.4 - Extreme Values

Examples: Find the locations of all absolute minima and maxima for
(1) $f(x)=x^{3}+3 x^{2}-9 x+4$ on $[-6,3]$

Section 3.4 - Extreme Values

(2) $f(x)=\tan (x)-x$ on $\left[-\frac{\pi}{3}, \frac{\pi}{2}\right)$

Popper 10

(1) Let $f(x)=(x+2)^{2}-4$. The point $(-2,-4)$ is

Section 3.5 - Concavity and Points of Inflection

When $f^{\prime \prime}(x)>0$ on an open interval, the graph of $f(x)$ is concave up.

When $f^{\prime \prime}(x)<0$ on an open interval, the graph of $f(x)$ is concave down.

The point where $f^{\prime \prime}(c)=0$ and the sign of $f^{\prime \prime}$ changes is a point of inflection.

Section 3.5 - Concavity and Points of Inflection

Determine the intervals of concavity and inflection points for
(1) $y=x^{3}-3 x^{2}+2 x-1$

Section 3.5 - Concavity and Points of Inflection

(2) $f(x)=x^{4}$

Section 3.5 - Concavity and Points of Inflection

When $f^{\prime \prime}(x)>0$ on an open interval, the graph of $f(x)$ is concave up.

When $f^{\prime \prime}(x)<0$ on an open interval, the graph of $f(x)$ is concave down.

The point where $f^{\prime \prime}(c)=0$ and the sign of $f^{\prime \prime}$ changes is a point of inflection.

Section 3.5 - Concavity and Points of Inflection

Given $f(x)$, find all extrema and points of inflection and tell where the graph is increasing and decreasing, concave up and concave down.
(1) $f(x)=2 x^{3}-5 x^{2}-4 x+2$

Section 3.5 - Concavity and Points of Inflection

The graph of $f^{\prime}(x)$ is shown on the interval $[-2,3]$. What is the shape of f, given that $f(0)=0$?

Section 3.6 - Curve Sketching

Asymptote review: Find any horizontal and/or vertical asymptotes.
(1) $f(x)=\frac{1}{x^{2}+1}$
(2) $f(x)=\frac{2 x^{2}+x-7}{5 x^{2}-1}$
(3) $f(x)=\frac{2 x-7}{x^{2}-1}$

Section 3.6 - Curve Sketching

Asymptote review: Find any horizontal and/or vertical asymptotes.
(1) $f(x)=\frac{7 x^{3}+2}{6 x^{2}-5}$
(0) $f(x)=\frac{3 x^{5}+2 x}{4 x^{5}-1}$
($f(x)=\frac{4 x}{\sqrt{x^{2}+9}}$

Popper 10

(2) Find the vertical and horizontal asymptotes $f(x)=\frac{2 x}{\sqrt{4 x^{2}+1}}$.

Popper 10

(3) Find the vertical and horizontal asymptotes $f(x)=\frac{x}{4 x^{2}-1}$.

