Math 1431
 Section 16679

Bekki George: rageorge@central.uh.edu
 University of Houston

$$
10 / 08 / 19
$$

Office Hours: Tuesdays \& Thursdays 11:45-12:45
(also available by appointment)
Office: 218C PGH
Course webpage: www.casa.uh.edu

Questions

Section 3.6 - Curve Sketching

Asymptote review: Find any horizontal and/or vertical asymptotes.
(1) $f(x)=\frac{1}{x^{2}+1}$
(2) $f(x)=\frac{2 x^{2}+x-7}{5 x^{2}-1}$
(3) $f(x)=\frac{2 x-7}{x^{2}-1}$

Section 3.6 - Curve Sketching

Asymptote review: Find any horizontal and/or vertical asymptotes.
(1) $f(x)=\frac{7 x^{3}+2}{6 x^{2}-5}$
(0) $f(x)=\frac{3 x^{5}+2 x}{4 x^{5}-1}$
($f(x)=\frac{4 x}{\sqrt{x^{2}+9}}$

Popper 11

(1) Find the vertical and horizontal asymptotes $f(x)=\frac{2 x}{\sqrt{4 x^{2}+1}}$.

Popper 11

(2) Find the vertical and horizontal asymptotes $f(x)=\frac{x}{4 x^{2}-1}$.

Section 3.6 - Curve Sketching

Assume that f is continuous at $x=c$ and differentiable for $x \neq c$. A vertical tangent exists at $(c, f(c))$ if as $x \rightarrow c$ then $f^{\prime}(x) \rightarrow \infty$ or $f^{\prime}(x) \rightarrow-\infty$.

Example: $f(x)=x^{1 / 3}$

Section 3.6 - Curve Sketching

Assume that f is continuous at $x=c$ and differentiable for $x \neq c$.
A vertical cusp exists at $(c, f(c))$ if as $x \rightarrow c^{-}$then $f^{\prime}(x) \rightarrow-\infty$ and as $x \rightarrow c^{+}$then $f^{\prime}(x) \rightarrow \infty$.

Or, if as $x \rightarrow c^{-}$then $f^{\prime}(x) \rightarrow \infty$ and as $x \rightarrow c^{+}$then $f^{\prime}(x) \rightarrow-\infty$.
Example: $f(x)=5+(x-3)^{2 / 7}$

Popper 11

(3) Determine whether or not the graph of f has a vertical tangent or a vertical cusp at $c=2$.

$$
f(x)=4-(2-x)^{\frac{3}{7}}
$$

Section 3.6 - Curve Sketching

Examples of using calculus to graph functions:
(1) $f(x)=(2-x)^{4 / 5}$

Section 3.6 - Curve Sketching

(2) $f(x)=x(x-1)^{1 / 3}$

Section 3.6 - Curve Sketching

(3) $f(x)=-4 x^{3}-6 x^{2}+24 x+12$

Section 3.6 - Curve Sketching

(6) $f(x)$ has domain of $[1,2) \cup(2,6], f(1)=2, f(3)=0, f(6)=4$, $\lim _{x \rightarrow 2^{-}} f(x)=-\infty$ and $\lim _{x \rightarrow 2^{+}} f(x)=-\infty$
$f^{\prime}(x)<0$ on $(1,2)$ and $f^{\prime}(x)>0$ on $(2,6)$,
$f^{\prime \prime}(x)<0$ on $(1,2)$ and $f^{\prime \prime}(x)<0$ on $(2,6)$

Popper 11

(1) If $\lim _{x \rightarrow-\infty} g(x)=6$ then the graph of $g(x)$ has a

Popper 11

(6) If $\lim _{x \rightarrow 6+} g(x)=-\infty$ then the graph of $g(x)$ has a

