# Math 1431 <br> Section 16679 

# Bekki George: rageorge@central.uh.edu <br> University of Houston 

$$
10 / 15 / 19
$$

# Office Hours: Tuesdays \& Thursdays 11:45-12:45 (Not 10/15) (also available by appointment) Office: 218C PGH 

Course webpage: www.casa.uh.edu

## Popper 13

(1) True or false? A circle is a function. (example: $x^{2}+y^{2}=4$ )

## Section 4.1 - Inverses

What determines whether the graph of a function is invertible (has an inverse that is also a function)?

Definition: A function $f$ is one-to-one if $f\left(x_{1}\right)=f\left(x_{2}\right)$ then $x_{1}=x_{2}$.

In other words, two different $x$ values cannot have the same $y$ values.
If a function is one-to-one, then it has an inverse.
(Remember, domain of $f$ equals the range of $f^{-1}$ )

## Section 4.1 - Inverses

Which of the following functions are invertible?



## Section 4.1 - Inverses

Theorem: If $f$ is either an increasing function or a decreasing function, then $f$ is an invertible function.

## Section 4.1 - Inverses

Example: Show that $f(x)=x^{3}+3 x$ is invertible on the interval $[0,10]$.

## Popper 13

(2) True or false? A parabola has an inverse. (example: $y=4 x^{2}$ )

## Section 4.1 - Inverses

Theorem: If $f$ is either an increasing function or a decreasing function, then $f$ is an invertible function.

## Section 4.1 - Inverses

Example: Show that $f(x)=x^{3}+3 x$ is invertible on the interval $[0,10]$.

## Section 4.1 - Inverses

Example: Show that $f(x)=\sin (x)$ is invertible on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

## Section 4.1 - Inverses

How do we find the formula for the inverse of a function?
(1) Start with $y=f(x)$.
(2) Solve for $x$ in terms of $y$. This will give something like $x=g(y)$.
(3) Switch the $x$ 's and $y$ 's. This will give $y=g(x)$.
(1) The function $g$ is the inverse of $f$.

We can only do this for simple functions.
We will use the notation $f^{-1}(x)$ to denote the inverse of $f(x)$.

## Section 4.1 - Inverses

Example: Is $f(x)=2 x-3$ invertible? If so, find its inverse.

## Section 4.1 - Inverses

Example: Find the inverse of $y=\frac{x+2}{x-3}$ if possible.

## Section 4.1 - Inverses

How are functions related to their inverses?
Algebraically:

Geometrically:


## Section 4.1 - Inverses

Theorem: If $f(x)$ is continuous and invertible then $f^{-1}(x)$ is continuous.

Theorem: If $f(x)$ is differentiable and invertible, and $f^{\prime}(x)$ is nonzero, then $f^{-1}(x)$ is differentiable.

Also, if $f(a)=b$ and $f^{\prime}(a) \neq 0$, then $\left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}\left(f^{-1}(b)\right)}=\frac{1}{f^{\prime}(a)}$.

## Section 4.1 - Inverses

We found that $f(x)=x^{3}+3 x$ was invertible on $[0,10]$. Find $\left(f^{-1}\right)^{\prime}(4)$.

## Section 4.1 - Inverses

Given $f(x)=2 x+\sin (x)$, find $\left(f^{-1}\right)^{\prime}(2 \pi)$ (if possible).

## Section 4.1 - Inverses

Let $f(x)=x^{5}+2 x^{3}+2 x$. Give an equation of the tangent line to the graph of $f^{-1}(x)$ at the point $(-5,-1)$.

## Section 4.1 - Inverses

Given $f(x)=x^{5}+1$, find $\left(f^{-1}\right)^{\prime}(33)$ if possible.

## Popper 13

(3) Is $f(x)=x^{3}+2 x-3$ invertible?

## Popper 13

(1) Find $\left(f^{-1}\right)^{\prime}(2)$ if

$$
f(2)=3, f(4)=2, f(3)=-2, f^{\prime}(2)=7, f^{\prime}(3)=5, f^{\prime}(4)=10 .
$$

## Popper 13

$\bigcirc$

## To Do

## Read 4.1.

Take quiz 15.
Email questions if you have any.

