Math 1431
 Section 16679

Bekki George: rageorge@central.uh.edu
 University of Houston

10/17/19

Office Hours: Tuesdays \& Thursdays 11:45-12:45
(also available by appointment)
Office: 218C PGH
Course webpage: www.casa.uh.edu

Questions?

Popper 14

(1) Is $f(x)=x^{3}+2 x-3$ invertible?

Popper 14

(2) Find $\left(f^{-1}\right)^{\prime}(2)$ if

$$
f(2)=3, f(4)=2, f(3)=-2, f^{\prime}(2)=7, f^{\prime}(3)=5, f^{\prime}(4)=10 .
$$

Section 4.2 - The Exponential Function

The exponential function: $f(x)=e^{x}$ or $f(x)=\exp (x)$.
Graph:

Section 4.2 - The Exponential Function

The derivative of $f(x)=e^{x}$ is $f^{\prime}(x)=e^{x}$
Chain rule: $\frac{d}{d x} e^{u}=e^{u} \cdot u^{\prime}$

Section 4.2 - The Exponential Function

Examples:
(1) $\frac{d}{d x} e^{2 x-1}=$
(2) $\frac{d}{d x} e^{\sin (x)}=$
(3) $\frac{d}{d x} e^{x^{2}+\sin (x)}=$

Section 4.2 - The Exponential Function

Examples:
(1) $\frac{d}{d x} e^{-x^{2}}=$
(6) $\frac{d}{d x} \exp \left(-\frac{3}{x}\right)=$

Section 4.2 - The Exponential Function

Examples:
(6) Find the equation of the tangent line to $y=e^{1-x}$ at the point $(1,1)$.

Popper 14

(3) Find $\frac{d}{d x}\left(e^{\cos (x)}\right)$.

Section 4.2 - The Exponential Function

What is the inverse of $f(x)=e^{x}$ look like?

Since $f(x)=e^{x}$ and $g(x)=\ln (x)$ are inverses, we have $e^{\ln (x)}=x$

Section 4.2 - The Exponential Function

Suppose we want to find the derivative of $y=3^{x}$. We can re-write this as $y=e^{\ln \left(3^{x}\right)}=e^{x \ln (3)}$. Note that $\ln (3)$ is a constant. Finding y^{\prime} we get

Now suppose we want to find the derivative of $y=a^{x}$. Can we find a general formula?

Section 4.2 - The Exponential Function

Examples:
(1) $\frac{d}{d x}\left(2^{x}\right)=$
(2) $\frac{d}{d x}\left(5^{3 x^{2}}\right)=$

Popper 14

(9) Find $\frac{d}{d x}\left(4^{x}\right)$.

Section 4.3 - Logarithms

$$
\begin{aligned}
& f\left(f^{-1}(x)\right)=x \\
& f^{-1}(f(x))=x \\
& f\left(e^{x}\right)=\ln \left(e^{x}\right)=x \\
& f^{-1}(\ln x)=e^{\ln x}=x
\end{aligned}
$$

Section 4.3 - Logarithms

Properties of Logarithms

Logarithmic form with $a>0, a \neq 1, x>0, y>0$
i. $\log _{a} 1=0$
ii. $\log _{a} a=1$
iii. $a^{\log _{a} x}=x$
iv. $\log _{a} x y=\log _{a} x+\log _{a} y$
v. $\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$
vi. $\log _{a} x^{y}=y \log _{a} x$

Exponential form of a logarithm:

Section 4.3 - Logarithms

Examples: Expand using properties of logarithms:
(1) $\log _{2} \frac{5}{3}$
(2) $\log _{2} \frac{8}{3}$
(3) $\log _{2} \frac{a b}{x y}$

Section 4.3 - Logarithms

Natural logs: $\log _{e}(x)=\ln (x)$
More examples: Expand using properties of logarithms:
(c) $\ln \frac{(x+3)^{2}}{x \sqrt{x-2}}$
(c) $\ln \left(\frac{2 x^{3}}{4 y^{5} z^{2}}\right)$

Section 4.3 - Logarithms

What is the domain of $f(x)=\log \sqrt{3-4 x}$?

Section 4.3 - Logarithms

Graph $\ln (x)=y$. What would the derivative look like?

Section 4.3 - Logarithms

$$
\frac{d}{d x}[\ln x]=\frac{1}{x}, x>0
$$

Let u be a differentiable function of x. Then,
$\frac{d}{d x}[\ln u]=\frac{u^{\prime}}{u}, u>0$

Examples:
(1) $\frac{d}{d x}[\ln 3 x]=$

Section 4.3 - Logarithms

(2) $\frac{d}{d x}\left[\ln \left(3 x^{4}+5\right)\right]=$
(3) $\frac{d}{d x}\left[x^{2} \ln x\right]=$
(9) $\frac{d}{d x}\left[\ln x^{4}\right]=$

Section 4.3 - Logarithms

(6) $\frac{d}{d x}\left[(\ln x)^{4}\right]=$
(0) $\frac{d}{d x}[\cos (\ln x)]=$

Popper 14

(6) $\frac{d}{d x}(\ln x)=$

To Do

Read 4.2 and 4.3.
Take quiz 16.
Email me questions if you have any.

