Math 1431
 Section 16679

Bekki George: rageorge@central.uh.edu
 University of Houston

10/29/19

Office Hours: Tuesdays \& Thursdays 11:45-12:45
(also available by appointment)
Office: 218C PGH
Course webpage: www.casa.uh.edu

Questions?

Section 4.4 - Inverse Trigonometric Functions

Formulas (u is a function of x):

$$
\begin{aligned}
& \frac{d}{d x}[\arcsin (u)]=\frac{u^{\prime}}{\sqrt{1-u^{2}}} \\
& \frac{d}{d x}[\arctan (u)]=\frac{u^{\prime}}{1+u^{2}} \\
& \frac{d}{d x}[\operatorname{arcsec}(u)]=\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}}
\end{aligned}
$$

Section 4.4 - Inverse Trigonometric Functions

Differentiate $y=\sin ^{-1} \sqrt{x^{2}+2}$

Popper 16

(1) Find $f^{\prime}(1)$ given that $f(x)=\arctan \left(2^{x}\right)$.

Popper 16

(2) Compute $\lim _{x \rightarrow \infty} \arctan (x)$.

Section 5.1 - Optimization

Optimization problems (to maximize or minimize):
(1) Draw a picture, label it.
(2) Determine the primary function (what is to be a \max / min)
(3) Use a secondary formula if necessary to get the primary function in terms of one variable.
(9) Determine a feasible domain.
(6) Find the \max / min.
(0) SHOW that the answer is a max/min using the First or Second Derivative test.

To maximize/minimize a function on a closed bounded interval, we evaluate the function at the endpoints, and then evaluate the function at any critical numbers in the interval.

Section 5.1 - Optimization

Examples:
(1) Find the dimensions to minimize the perimeter of a rectangular garden whose area is 48 square feet.

Section 5.1 - Optimization

(2) Find the largest possible area for a rectangle with base on the x-axis and upper vertices on the curve $y=4-x^{2}$.

Section 5.1 - Optimization

(3) Square corners are cut from a rectangular piece of tin that is 24 cm by 45 cm . The edges are folded up to form an open box. Find the length of the side of the square corner removed in order to have a box with a maximum volume.

Section 5.1 - Optimization

(1) Find two numbers whose sum is 10 and the sum of their squares is a minimum.

Section 5.1 - Optimization

(6) A rectangle sits in the first quadrant with its base on the x -axis and its left side on the y-axis. Its upper right hand corner is on the line passing through the points $(0,4)$ and $(3,0)$. What is the largest possible area of this rectangle?

Section 5.1 - Optimization

(6) Find A and B given the function $y=A x^{-1 / 2}+B x^{1 / 2}$ has a minimum value of 6 at $x=9$.

Section 5.1 - Optimization

(1) Maximize the volume of a box, open at the top, which has a square base and which is composed of 600 square inches of material. Let x represent each dimension of the base and let y represent the height of the box.

Section 5.1 - Optimization

(8) Find the point(s) on the graph of $y=4-x^{2}$ closest to $(0,2)$.

Section 5.1 - Optimization

(1) A closed box, whose length is twice its width, is to have a surface area of $92 \mathrm{~cm}^{2}$. Find the dimensions of the box when the volume is a maximum.

Popper 16

(3) Compute the slope of the normal line to the graph of $f(x)=\ln \left(\arctan \left(e^{x}\right)\right)$ at $x=0$.

