Math 1431
 Section 16679

Bekki George: rageorge@central.uh.edu
 University of Houston

11/07/19

Office Hours: Tuesdays \& Thursdays 11:45-12:45
(also available by appointment) Office: 218C PGH

Course webpage: www.casa.uh.edu

Questions?

Review

Popper 19

(1) Give the equation of the tangent line to $f(x)=\arctan (x)$ at $x=0$.

Popper 19

(2) Use your answer to problem 1 to estimate $\arctan (.2)$.

Popper 19

(3) Find the maximum of $x \cdot y$ given that $3 x+2 y=6$.

Popper 19

(1) $\lim _{x \rightarrow 0} \frac{2 x}{\arctan (3 x)}=$

Section 6.1 -The Definite Integral

Suppose you wanted to find the area of this circle and all you knew was how to find the area of a square?

Section 6.1 -The Definite Integral

How could we find the area under the curve of $f(x)=x^{2}$ and above the x-axis for $x \in[0,2]$?

Section 6.1 -The Definite Integral

Section 6.1 -The Definite Integral

How we place our rectangles is important. We can place rectangles such that the upper left corner of each rectangle is on the curve. Suppose we are given $f(x)=\frac{1}{x}$ on the interval $[1,2]$ and want four rectangles withe equal widths such that the left endpoint of each rectangle is on the curve:

Section 6.1 -The Definite Integral

Suppose we are given $f(x)=\frac{1}{x}$ on the interval $[1,2]$ and want four rectangles withe equal widths such that the right endpoint of each rectangle is on the curve:

Section 6.1 -The Definite Integral

Lastly, suppose we are given $f(x)=\frac{1}{x}$ on the interval $[1,2]$ and want four rectangles withe equal widths such that the midpoint of each rectangle is on the curve:

Section 6.1 -The Definite Integral

The desired "area" is the sum of the areas of the rectangles such that the number of rectangles approaches infinity. Now, we cannot find an infinite number of areas ourselves but we can estimate our answer with a finite number of rectangles. We can overestimate our answer or underestimate it depending on where we place the height of our rectangles. An Upper Riemann Sum over a given partition P, $U_{f}(P)$, is an overestimate of the area between a curve and the x-axis and a Lower Riemann Sum, $L_{f}(P)$, is an underestimate. The actual "area" is somewhere between these two.

$$
L_{f}(P) \leq \text { Area } \leq U_{f}(P)
$$

Section 6.1 -The Definite Integral

Examples:
(1) Find an upper sum for $f(x)=x^{2}, x \in[-1,1]$ if the partition is $P=\left[-1,-\frac{3}{4}, \frac{1}{4}, \frac{1}{2}, 1\right]$.

Section 6.1 -The Definite Integral

Examples:
(2) Find an lower sum for $f(x)=x^{2}, x \in[-1,1]$ if the partition is $P=\left[-1,-\frac{3}{4}, \frac{1}{4}, \frac{1}{2}, 1\right]$.

Popper 19

(6) $\frac{d}{d x}(\arcsin (3 x))=$

To Do

Review sections 3.6-5.3.
Work your review and take the PT.

