1. Let f be a function that has derivatives of all orders on the interval $(-1,1)$. Assume

$$
f(0)=1, f^{\prime}(0)=\frac{1}{2}, f^{\prime \prime}(0)=-\frac{1}{4}, f^{\prime \prime \prime}(0)=\frac{3}{8}, \text { and }\left|f^{(4)}(x)\right| \leq 6 \text { for all } \mathrm{x} \text { in the interval }(0,1) .
$$

a) Find the third-degree Taylor polynomial about $\mathrm{x}=0$ for the function f.
b) Use your answer to part (a) to estimate the value of $f(0.5)$.
c) What is the maximum possible error for the approximation made in part (b)?
2. Estimate the error that results when $\sin \mathrm{x}$ is replaced by $x-\frac{1}{6} x^{3}$ for $|x|<0.2$. Show your reasoning.
3. Which term is truncated if we want to approximate the sum of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n^{3}-1}$ with an error of less than $\frac{1}{1000} ?$
4. Give the first four terms of the Taylor Polynomial for $f(x)=x \cos \left(x^{3}\right)$
5. Find the radius and interval of convergence for:
a) $\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-2)^{n}}{3^{n} n^{2}}$
b) $\sum_{n=0}^{\infty}(2 n)!(x-5)^{n}$
6. What is the coefficient of x^{6} in the Taylor series expansion about $x=0$ for $f(x)=\sin \left(x^{2}\right)$?

