- 1. Convert (2, $\frac{\pi}{3}$) to rectangular form.
- 2. Convert (6, -3) to polar form.
- 3. Convert $x^2 + y^2 6x + 2 = 0$ to polar form.
- 4. Convert $r = 2 \sec \theta$ to rectangular form.
- 5. Graph the following:

a. $r = \sin 3\theta$	b. $r = \cos 2\theta$	c. $r = 2\sin\theta$	d. $r = 3\cos\theta$
e. $r = \theta$	f. $r = 1 - \cos \theta$	g. $\theta = \frac{\pi}{3}$	h. $r = 1 + \cos \theta$
i. $r = 2 - 4\sin\theta$	j. $r = 3 + 6\cos\theta$	k. $r = -1 - 2\cos\theta$	1. $r = 1 + 2\sin\theta$

6. What is the area inside the curve $r = 2 \cos \theta$ and outside the curve r = 1? Graph and shade the region.

LOOK OVER THE SEQ & SERIES WS POSTED ON 4/16! I will be posting solution videos soon.