PRINTABLE VERSION

Quiz 24 10.3

You scored 0 out of 100

Question 1

You did not answer the question.

Express the curve by an equation in x and y given $x(t) = t^2$ and $y(t) = 2t^4 + 4$.

a)
$$x = 4y^2 + 5, y \ge 0$$

b)
$$x = 4y^2 + 3, y \ge 0$$

c)
$$y = 2x^2 + 3, x \ge 0$$

d)
$$y = x^2 + 4, x \ge 0$$

(e)
$$y = 2x^2 + 4, x \ge 0$$

Ouestion 2

You did not answer the question.

Express the curve by an equation in x and y given $x(t) = \cos(t)$ and $y(t) = 5\sin(t)$. \rightarrow Sun(t)= $\frac{4}{5}$

a)
$$x^2 - 25 y^2 = 25$$

b)
$$25x^2 + y^2 = 25$$

c)
$$25x^2 + y^2 = 5$$

d)
$$x^2 + 25y^2 = 25$$

e)
$$25x^2 - y^2 = 5$$

$(205^{2}(1) + 54n^{2}(1) = 1$

$$x^2 + (\frac{9}{5})^2 = 1$$

Question 3

You did not answer the question.

Express the curve by an equation in x and y given $x(t) = \sec^2(t) + 2$ and $y(t) = 5 + \tan(t)$.

a)
$$x = (y-5)^2 + 2$$

$$1 + \tan^2(t) = \sec^2(t)$$

b)
$$y = (x-5)^2 + 3$$

$$1 + (y-5)^2 = x-2$$

c)
$$x = (y-5)^2 + 3$$

d)
$$y = (x-5)^2 + 2$$

Question 4

You did not answer the question.

< : -1 ≤ Sun(4) ≤ 1

You did not answer the question.

Express the curve by an equation in x and y given $x(t) = \sin(t)$ and $y(t) = 9 + \cos^2(t)$.

Cos² (t) = y -9

et >0 so x>0

a)
$$-x^2 + y = 10, -9 \le x \le 9$$

b)
$$y^2 + x = 10, \ 0 \le x \le 1$$

$$y - 9 + x^2 = 1$$

c)
$$x^2 + y = 9, -1 \le x \le 1$$

d)
$$\bigcirc x^2 + y = 10, -1 \le x \le 1$$

e)
$$-y^2 + x = 9, -9 \le x \le 9$$

Question 5

You did not answer the question.

Express the curve by an equation in x and y given $x(t) = e^t$ and $y(t) = 5 - e^{3t}$

a)
$$x^3 + y = 5, x > 0$$

b)
$$-x^4 + y = 6, \ 0 \le x \le 5$$

c)
$$y^3 + x = 5, x > 0$$

d)
$$-x^3 + y = 5$$
, $x \ge 1$

e)
$$-y^3 + x = 5$$
, $0 \le x \le 1$

Question 6

You did not answer the question.

-2

Express the curve by an equation in x and y given $\left(\frac{1}{t}, \frac{2}{t^2}\right)$, $t \in (0, 1]$ and identify the correct

sketch of the curve.

-1

Print Test 4/30/16, 7:15 AM

b) $\bigcirc y = 2x^{-2}$;

c) $y = 2x^{-1}$;

d)
$$\bigcirc y = 2x^2;$$

e)
$$y = -2x^2$$
;

Question 7

You did not answer the question.

t=0x=3, y=0

Give a parameterization for the ellipse $16x^2 + 9y^2 = 144$ that begins at the point (3,0) and traverses once in a counterclockwise manner.

a)
$$x(t) = 4 \cos(t), y(t) = 3 \sin(t), t \in [0, 2\pi]$$

b)
$$x(t) = 16 \cos(t), \ y(t) = 9 \sin(t), \ t \in [0, 2\pi]$$

c)
$$x(t) = 9 \sin(t), y(t) = 16 \cos(t), t \in [0, 2\pi]$$

(d)
$$x(t) = 3 \cos(t), y(t) = 4 \sin(t), t \in [0, 2\pi]$$

e)
$$x(t) = 4 \sin(t), y(t) = 3 \cos(t), t \in [0, 2\pi]$$

$$\frac{\chi^2}{9} + \frac{y^2}{16} = 1$$

$$(\frac{1}{3})^{2} + (\frac{1}{4})^{2} = 1$$

$$\cos(t) = \frac{x}{3}$$
 $\sin(t) = \frac{9}{4}$

x(t)=3 cos(t) y(b)=4 sun(t)

Question 8 begins at (0,3)

You did not answer the question.

Find a parametrization x = x(t), y = y(t), $t \in [0, 1]$ for the line segment from (-8, -2) to (5, 8).

(a)
$$y(t) = 13 t - 8$$
, $y(t) = 10 t - 2$

b)
$$x(t) = 13t - 8$$
, $y(t) = -2 + 11t$

$$\mathbf{c}$$
 $\mathbf{x}(t) = -8 - 14t$, $\mathbf{y}(t) = 10t - 2$

$$\mathbf{d} \mathbf{y}(t) = -10 t - 8, \ y(t) = -13 t - 2$$

$$\mathbf{e}(x(t)) = -13t - 8, \ y(t) = -10t - 2$$

$$x(t) = -8 + t(5 - -8)$$

Question 9

You did not answer the question.

Find a parametrization x = x(t), y = y(t) $t \in [0, 1]$ for the line segment from (-5, -3) to (-7, -3).

a)
$$(x(t) = -5, y(t) = 2t - 3$$

b)
$$\bigcirc x(t) = -2t - 5, \ y(t) = -3$$

$$y(t) = -3 + t(-3 - 3)$$

Print Test 4/30/16, 7:15 AM

c)
$$x(t) = 2t - 5$$
, $y(t) = 0$

d)
$$\bigcirc x(t) = -5 + t$$
, $y(t) = -3$

e)
$$x(t) = -2t - 5$$
, $y(t) = -3 + t$

Question 10

You did not answer the question.

Find a parametrization x = x(t), y = y(t) for $f(x) = x^8 - 8x^2 - 9$ from (9) - 10 to (10, -8).

a)
$$x(t) = t^8 - 8t^2 - 9$$
, $y(t) = t$, $t \in [9, 10]$

b)
$$x(t) = t^8 - 8t^2$$
, $y(t) = -9$, $t \in [9, 10]$

c)
$$x(t) = t^2$$
, $y(t) = t^4 - 8t - 9$, $t \in [81, 100]$

$$(1) \quad x(t) = t, \ y(t) = t^8 - 8t^2 - 9, \ t \in [9, 10]$$

e)
$$x(t) = t^8 - 8t^2 - 9$$
, $y(t) = t$, $t \in [-10, -8]$

if
$$y = f(x)$$

Let $x(t) = t$
then $y(t) = f(t)$