PRINTABLE VERSION

Quiz $24 \quad 10.3$

You scored 0 out of 100

Question 1

You did not answer the question.
Express the curve by an equation in x and y given $x(t)=t^{2}$ and $y(t)=2 t^{4}+4$.
a) $x=4 y^{2}+5, y \geq 0$
b) $x=4 y^{2}+3, y \geq 0$
c) $y=2 x^{2}+3, x \geq 0$
$y=2 x^{2}+4$
d) $y=x^{2}+4, x \geq 0$
(e) $y=2 x^{2}+4, x \geq 0$

Question 2

You did not answer the question.
Express the curve by an equation in x and y given $x(t)=\cos (t)$ and $y(t)=5 \sin (t) . \rightarrow \sin (t)=\frac{y}{5}$
a) $x^{2}-25 y^{2}=25$
$\cos ^{2}(t)+\operatorname{sen}^{2}(t)=1$
b) $25 x^{2}+y^{2}=25$
$x^{2}+(y / 5)^{2}=1$
c) $25 x^{2}+y^{2}=5$
d) $x^{2}+25 y^{2}=25$
e) $25 x^{2}-y^{2}=5$

Question 3

You did not answer the question.

$$
\sec ^{2}(t)=x-2
$$

Express the curve by an equation in x and y given $x(t)=\sec ^{2}(t)+2$ and $y(t)=5+\tan (t) . \rightarrow \tan (t)$
a) $x=(y-5)^{2}+2$

$$
\begin{aligned}
& 1+\tan ^{2}(t)=\sec ^{2}(t) \\
& 1+(y-5)^{2}=x-2
\end{aligned}
$$

b) $y=(x-5)^{2}+3$
c) $x=(y-5)^{2}+3$
d) $y=(x-5)^{2}+2$
e) $x=(y+5)^{2}+1$

Question 4
Question 4
Express the curve by an equation in x and y given $x(t)=\sin (t)$ and $y(t)=9+\frac{\cos ^{2}(t)}{\cos ^{2}(t)}=y-9$
a)$-x^{2}+y=10,-9 \leq x \leq 9$

$$
\cos ^{2}(t)+\sin ^{2}(t)=1
$$

b)$y^{2}+x=10,0 \leq x \leq 1$
c)$\left.\begin{array}{l}x^{2}+y=9,-1 \leq x \leq 1 \\ x^{2}+y=10,-1 \leq x \leq 1\end{array}\right\}$
e)$-y^{2}+x=9,-9 \leq x \leq 9$

Question 5

$$
y-9+x^{2}=1
$$

d)

You did not answer the question.
Express the curve by an equation in x and y given $x(t)=\mathrm{e}^{t}$ and $y(t)=5-\mathrm{e}^{3 t}$.
a)$x^{3}+y=5, x>0$
b)$-x^{4}+y=6,0 \leq x \leq 5$
c)

$$
y^{3}+x=5, x>0
$$

d)$-x^{3}+y=5, x \geq 1$
e) $-y^{3}+x=5,0 \leq x \leq 1$

Question 6

You did not answer the question.
Express the curve by an equation in x and y given $\left(\frac{1}{t}, \frac{2}{t^{2}}\right), t \in(0,1]$ ard identify the correct sketch of the curve.

$$
x(t)=1 / t \quad y(t)=2 / t^{2}=2(1 / t)^{2}
$$

a) $y=2 x^{2}$;

		$(1,2)$		
-2	-1	0	1	2

-10

$$
y=2 x^{2}
$$

d) $y=2 x^{2}$;

е) $y=-2 x^{2}$;

Question 7
You did not answer the question.

$$
t=0
$$

$$
x=3, y=0
$$

Give a parametrization for the ellipse $16 x^{2}+9 y^{2}=144$ that begins at the point $(3,0)$ and traverses once in a counterclockwise manner.
a) $x(t)=4 \cos (t), y(t)=3 \sin (t), t \in[0,2 \pi]$

$$
\frac{x^{2}}{9}+\frac{y^{2}}{16}=1
$$

b) $x(t)=16 \cos (t), y(t)=9 \sin (t), t \in[0,2 \pi]$
c) $x(t)=9 \sin (t), y(t)=16 \cos (t), t \in[0,2 \pi]$
(d) $x(t)=3 \cos (t), y(t)=4 \sin (t), t \in[0,2 \pi]$

$$
(x / 3)^{2}+(y / 4)^{2}=1
$$

$$
\cos ^{2} t+\operatorname{sen}^{2} t=1
$$

e) $x(t)=4 \sin (t), y(t)=3 \cos (t), t \in[0,2 \pi]$

$$
\cos (t)=x / 3 \quad \sin (t)=y / 4
$$ $x(t)=3 \cos (t) \quad y(t)=\operatorname{sen}(t)$

You did not answer the question.
Find a parametrization $x=x(t), y=y(t), t \in[0,1]$ for the line segment from $(-8,-2)$ to $(5,8)$.
a) $y(t)=13 t-8, y(t)=10 t-2$

$$
x(t)=-8+t(5--8)
$$

b)

$$
x(t)=13 t-8, y(t)=-2+11 t \quad x(t)=-8+13 t
$$

c) $x(t)=-8-14 t, y(t)=10 t-2$

$$
y(t)=-2+t(8-2)
$$

d) $x(t)=-10 t-8, y(t)=-13 t-2$
e) $x(t)=-13 t-8, y(t)=-10 t-2$

$$
y(t)=-2+10 t
$$

Question 9
You did not answer the question.
Find a parametrization $x=x(t), y=y(t), t \in[0,1]$ for the line segment from $(-5,-3)$ to $(-7,-3)$.

$$
x_{0}+t\left(x_{1}-x_{0}\right)
$$

a)$x(t)=-5, y(t)=2 t-3$

$$
\begin{aligned}
& x(t)=-5+t(-7-5) \\
& y(t)=-3+t(-3-3)
\end{aligned}
$$

b)$x(t)=-2 t-5, y(t)=-3$
c) $x(t)=2 t-5, y(t)=0$
d) $x(t)=-5+t, y(t)=-3$
e) $x(t)=-2 t-5, y(t)=-3+t$

Question 10

You did not answer the question.

Find a parametrization $x=x(t), y=y(t)$ for $f(x)=x^{8}-8 x^{2}-9$ from $\left.(9)-10\right)$ to $(10,-8)$.
a) $x(t)=t^{8}-8 t^{2}-9, y(t)=t, t \in[9,10]$ if $y=f(x)$
b) $x(t)=t^{8}-8 t^{2}, y(t)=-9, t \in[9,10]$
c) $x(t)=t_{0}^{2}, y(t)=t_{0}^{4}-8 t-9, t \in[81,100]$

Let $x(t)=t$ then $y(t)=f(t)$
d) $x(t)=t, y(t)=t^{8}-8 t^{2}-9, t \in[9,10]$
e) $x(t)=t^{8}-8 t^{2}-9, y(t)=t, t \in[-10,-8]$

