PRINTABLE VERSION
Quiz 25

$$
y^{\prime}(t) / x^{\prime}(t)
$$

You scored 0 out of 100
Question 1
You did not answer the question.
Find the slope of the tangent line to the curve $x(t)=\cos ^{3}(2 t), y(t)=\sin ^{3}(2 t)$ at the point where $t=\frac{\pi}{3}$.
a)$-3 \sqrt{3}$
b) $\int \sqrt{3}$
c) $2 \sqrt{3}$
d) $\frac{\sqrt{3}}{3}$

$$
\begin{aligned}
& y^{\prime}(t)=3 \sin ^{2}(2 t)(2 \cos (2 t)) \\
& y^{\prime}(\pi / 3)=6 \sin ^{2}(2 \pi / 3) \cdot \cos (2 \pi / 3)=6\left(\frac{3}{4}\right)\left(-\frac{1}{2}\right) \\
& x^{\prime}(t)=3 \cos ^{2}(2 t)(-2 \operatorname{sen}(2 t)) \\
& x^{\prime}(\pi / 3)=-6\left(\frac{1}{4}\right)(\sqrt{3} / 2) \\
& \frac{-18 / 8}{-6 \sqrt{3} / 8}=\frac{3}{\sqrt{3}}=\sqrt{3}
\end{aligned}
$$

e)$-\sqrt{3}$

Question 2
You did not answer the question.
$y(3)=\cos (3 \pi)=-1$

Find an equation in x and y for the line tangent to the curve $x(t)=3 t, y(t)=\cos (\pi t)$ at the point where $t=3$.

$$
\begin{aligned}
& y^{\prime}(t)=-\pi \sin (\pi t) ; y^{\prime}(3)=-\pi \operatorname{sen}(3 \pi) \\
& =0 \\
& x^{\prime}(t)=3
\end{aligned}
$$

b)$3 x-3=0$
c)$x=-1$
d) ($y=-1$
e)$y=2$

Question 3
You did not answer the question.
Find an equation in x and y for the line tangent to the curve $x(t)=t-2, y(t)=t^{4}$ at the point $(0,16)$.

$$
\begin{array}{ll}
0=t-2 & 16=t^{4} \\
2=t & 2=t
\end{array}
$$

a)$32 x-y+16=0$
b)$32 x+y+112=0$
c)$32 x+y+16=0$
d)$-32 x+y+16=0$
e)$8 x-y+48=0$

$$
\begin{array}{ll}
y^{\prime}(t)=4 t^{3} & y^{\prime}(2)=32 \\
x^{\prime}(t)=1 & x^{\prime}(2)=1
\end{array}
$$

$$
m=32 / 1
$$

Question 4

$$
y-16=32(x-0)
$$

You did not answer the question.
Find an equation in x and y for the line tangent to the curve $x(t)=\frac{2}{t}, y(t)=t^{2}+2$ at the point $(1,6)$.

$$
\begin{array}{ll}
1=2 / t & 6=t^{2}+2 \\
t=2 & 4=t^{2}
\end{array}
$$

a) $2 x+\frac{5}{2}=0$

$$
+2=t
$$

$$
y^{\prime}(t)=2 t
$$

b) $4 x-\frac{11}{2}+\frac{1}{4} y=0$
c) $2 x-\frac{5}{2}=0$

$$
\begin{gathered}
x^{\prime}(2)=-2 / 4=-1 / 2 \\
y-6=\frac{4}{(-1 / 2)}(x-1) \\
y-6=-8(x-1) \\
y-6=-8 x+8 \\
8 x+y-14=0 \div 2
\end{gathered}
$$

d) $4 x-7+\frac{1}{2} y=0$
e)$-4 x+3=0$
Question 5
You did not answer the question.
Find an equation in x and y for the line tangent to the polar curve $r=12-6 \sin (\theta)$ at $\theta=0$.

a) $y=4 x+24 \quad y=-2 x+24 \quad x(\theta)=12 \cos \theta-6 \operatorname{sen} \theta \cos \theta$
b) $y=-2 x+24$
c)$y=6 x-1$

$$
\begin{aligned}
& y(\theta)=r \operatorname{sen} \theta=(12-6 \operatorname{sen} \theta) \operatorname{sen} \theta \\
& y(\theta)=12 \operatorname{sen} \theta-6 \operatorname{sen}^{2} \theta \quad y(0)=0
\end{aligned}
$$

d)$y=-2 x-12$
e)$y=-3 x+6$

$$
x^{\prime}(\theta)=-12 \operatorname{sen} \theta-6 \cos ^{2} \theta+6 \sin ^{2} \theta
$$

$$
\dot{m}=\frac{12}{-6}
$$

Question 6
You did not answer the question.

$$
x^{\prime}(0)=0-6+0=-6
$$

$y^{\prime}(\theta)=12 \cos \theta-12 \sin \theta \cos \theta$
$y^{\prime}(0)=12-0$
at to the polar curve $r=5 \cos (2 \theta)$ at $\theta=\frac{\pi}{2}$.
just line \#5
a)

$$
y=x+5
$$

b)$y=-5$
c)$x=5$
d)$y=2 x-5$
e)$y=-6$

Question 7
You did not answer the question.
Parametrize the curve $y=-3 x^{3}$ by a pair of differentiable functions $x=x(t), y=y(t)$ with $\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2} \neq 0$ then determine the tangent line at the orgin.

$$
(0,0)
$$

a)$x(t)=t, y(t)=-3 t^{3} ;$ tangent line: $x=0$
b)$x(t)=t^{2}, y(t)=-3 t^{3} ;$ tangent line: $x=0$
c) $x(t)=-3 t^{3}, y(t)=t$; tangent line: $y=-1$
d) $x(t)=-3 t^{3}, y(t)=t$; tangent line: $y=0$

$$
m=0 / 1=0
$$

e) $\mathcal{J} x(t)=t, y(t)=-3 t^{3}$; tangent line: $y=0$

$$
y-0=0(x-0)
$$

$$
\begin{array}{lll}
x(t)=t & x^{\prime}(t)=1 & x^{\prime}(0)=1 \\
y(t)=-3 t^{3} & y^{\prime}(t)=-9 t^{2} \quad y^{\prime}(0)=0
\end{array}
$$

$$
\begin{aligned}
& y=0 \\
& \text { if } m=\frac{1}{0} \Rightarrow e q . \quad \text { oof } 3
\end{aligned}
$$

Question 8

You did not answer the question.
Find the points (x, y) at which the curve $x(t)=t^{2}-12 t, y(t)=t^{3}-12 t$ has a vertical tangent.
a) $(-11,1)$

$$
X^{\prime}(t)=2 t-12
$$

b) $(12,2)$
c) $(11,-3)$
$2 t-12=0$
d) $(-36,144)$ $t=6$ $x(6)=36-72=-36$
e) $(-12,3)$

$$
y(6)=216-72=144
$$

Question 9

You did not answer the question.
Find the points (x, y) at which the curve $x(t)=11 \cos (t), y(t)=11 \sin (2 t)$ has a horizontal tangent.
a) $\left(\frac{11 \sqrt{2}}{2}, 22\right),\left(\frac{-11 \sqrt{2}}{2}, 22\right),\left(\frac{11 \sqrt{2}}{2},-22\right)$, and $\left(\frac{-11 \sqrt{2}}{2},-22\right)$
$22 \cos (2 t)=0$
b) $\left(\frac{11 \sqrt{2}}{4}, 11\right),\left(\frac{-11 \sqrt{2}}{4}, 11\right),\left(\frac{11 \sqrt{2}}{4},-11\right)$, and $\left(\frac{-11 \sqrt{2}}{4},-11\right)$
$\cos (2 t)=0$
c) $\left(\frac{11 \sqrt{2}}{2}, \frac{11}{2}\right),\left(\frac{-11 \sqrt{2}}{2}, \frac{11}{2}\right),\left(\frac{11 \sqrt{2}}{2},-\frac{11}{2}\right)$, and $\left(\frac{-11 \sqrt{2}}{2},-\frac{11}{2}\right) \begin{aligned} & 2 t=\pi / 2,3 \pi / 2,5 \pi / 2 \\ & t=\pi / 4,3 \pi / 4,5 \pi / 4,\end{aligned}$
d) $\left(\frac{11 \sqrt{2}}{2}, 11\right),\left(\frac{-11 \sqrt{2}}{2}, 11\right),\left(\frac{11 \sqrt{2}}{2},-11\right)$, and $\left(\frac{-11 \sqrt{2}}{2},-11\right)$
e) $(11 \sqrt{2}, 11),(-11 \sqrt{2}, 11),(11 \sqrt{2},-11)$, and $(-11 \sqrt{2},-11)$

$$
x\left(\pi_{4}\right)=11(\sqrt{2} / 2)
$$

Question 10

You did not answer the question.
Find the points (x, y) at which the curve $x(t)=3-\sin (t), y(t)=5+2 \cos (t)$ has a vertical tangent.
a) $(-2,0)$ and $(3,1)$
b) $(3,2)$ and $(-1,-3)$
c) $(3,1)$ and $(1,3)$

$$
-\cos t=0
$$

$$
\begin{aligned}
& \cos t=0 \\
& t=\pi / 2,3 \pi / 2
\end{aligned}
$$

d) $\mathcal{V}(2,5)$ and $(4,5)$

$$
\begin{array}{ll}
x(\pi / 2)=3-1=2 & y(\pi / 2)=5 \\
x(3 \pi / 2)=3+1=4 & y(3 \pi / 2)=5
\end{array}
$$

e) $(2,-2)$ and $(2,3)$

