10.5 - Arc length for Parametric Curves

Recall: Formula for finding the arc length of a curve in rectangular form:

Formula for finding the arc length of a curve in polar form:

$$L(c) = \int_{\alpha}^{\beta} \sqrt{\left[r(\theta)\right]^{2} + \left[r'(\theta)\right]^{2}} d\theta \qquad \Gamma(\theta) =$$

New: Formula for finding the arc length of a curve in parametric form:

$$L(c) = \int_{a}^{b} \sqrt{\left[x'(t)\right]^{2} + \left[y'(t)\right]^{2}} dt$$

Velocity and Speed (magnitude of velocity)

If the position of a particle at time t is given by

$$s(t) = \big(x(t), y(t)\big)$$

then the velocity is given by

$$v(t) = (x'(t), y'(t))$$

and the speed is given by

speed =
$$\|v(t)\| = \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2}$$

Let C be a curve in the upper half-plane (see figure). The curve can meet the xaxis, but only at a finite number of points. We will assume that C is parametrized by a pair of continuously differentiable functions

$$x = x(t), \quad y = y(t), \quad t \in [c, d].$$

Furthermore, we will assume that C is *simple*: no two values of t between c and d give rise to the same point of C; that is, the curve does not intersect itself.

If we revolve C about the x-axis, we obtain a surface of revolution. The area of that surface is given by the formula

$$A = \int_{c}^{d} 2\pi y(t) \sqrt{[x'(t)]^{2} + [y'(t)]^{2}} dt.$$

PRINTABLE VERSION

Quiz 26 – 10.5

Ouestion 3

You did not answer the question. Find the length of the curve of $x(t) = 3 \cos(4t)$, $y(t) = 3 \sin(4t)$, for $t \in [0, 2]$. X'(t) = -12 sun(4t) y'(t) = 12 cos(4t) **a**) 48 r2

e) 6
$$\int_{0}^{2} \sqrt{144} dt = \int_{0}^{2}$$

Ouestion 4

You did not answer the question.

Which of the following integrals will find the length of the curve of x(t) = 2t - 1, $y(t) = t^2 + 3t$, for $t \in [2, 6]$? x'(t) = 2 y'(t) = 2t + 3a) $\int_{a}^{6} \sqrt{4 + (2t+3)^2} dt$ **b**) $\int_{2}^{6} \sqrt{(2t-1)^{2} + (t^{2}+3t)^{2}} dt$ c) $\int_{2}^{6} \sqrt{4 + (t^{2} + 3t)^{2}} dt$ **d**) $= \int_{2}^{6} \sqrt{(2t-1)^{2} + (2t+3)^{2}} dt$ e) $\int_{2}^{6} \sqrt{(2t+3)^{2}+1} dt$

Ouestion 5

You did not answer the question.

Which of the following integrals will find the length of the curve of

$$x(t) = 3 - \cos(t), \ y(t) = 6t + \sin(t), \ \text{for } t \in [3, 6]?$$

a) $\int_{3}^{6} \sqrt{2(\cos(t))^{2} + 6\cos(t) + 45} \, dt$
b) $\int_{3}^{6} \sqrt{(\cos(t))^{2} + 12\cos(t) + 37} \, dt$
c) $\int_{3}^{6} \sqrt{10 + 12t\sin(t) + 36t^{2} - 6\cos(t)} \, dt$
d) $\int_{3}^{6} \sqrt{(\sin(t))^{2} + (6t + \sin(t))^{2}} \, dt$
e) $\int_{3}^{6} \sqrt{37 + 12\cos(t)} \, dt$

Question 6

You did not answer the question.

The equations $x(t) = t^2$ and $y(t) = t^3$ give the position of a particle at each time t from t = 0 to t = 3. Find the initial speed of the particle, the terminal speed, and the distance traveled. (\pounds^2, \pounds^3) $y(\pounds) = (7\pounds, 3\pounds^2)$ $||y(\pounds)|| = \sqrt{4\pounds^2 + 9\pounds^4}$ a) initial speed = 0, terminal speed = $2\sqrt{85}$; distance traveled = $\frac{85\sqrt{85}}{27} - \frac{8}{27}$ 4 rm. speed b) initial speed = 0, terminal speed = $\frac{9\sqrt{85}}{2}$; distance traveled = $\frac{85\sqrt{85}}{27} - \frac{8}{27}$ $is ||y(\pounds)||$ where $\xi = 3$ c) initial speed = 0, terminal speed = $3\sqrt{85}$; distance traveled = $\frac{85\sqrt{85}}{27} - \frac{8}{27}$ $\sqrt{346} + 729$ d) initial speed = 0, terminal speed = $6\sqrt{85}$; distance traveled = $\frac{170\sqrt{85}}{27} - \frac{16}{27}$ e) initial speed = 0, terminal speed = $\frac{3\sqrt{85}}{2}$; distance traveled = $\frac{85\sqrt{85}}{27} - \frac{4}{27}$ Question 7 $\sqrt{344 \pm 249 \pm 4}$ dt $-\int_{3}^{3} \sqrt{44 \pm 249 \pm 4}$ dt

Print Test	$X'(t) = 3e^{t}sin$	$t + 3e^{t} (ost = 3e^{t} (sunt + cost))$	4/30/16, 7:14 AM	
The ec	quations $x(t) = 3 e^t \sin(t)$	and $y(t) = 3 e^t \cos(t)$ give the position of a particle a	t each time t from	
$\frac{1}{90^{24}}$	$10 T = \pi$. Find the initial s	speed of the particle, the terminal speed, and the distance $L + (n^2 + 1) L = 902 t (n^2 + - 2) sunt (0st.)$	$L(1)^{21}$	
a) i	nitial speed = $6\sqrt{2}$, termin	nal speed = $6\sqrt{2}e^{\pi}$; distance traveled = $6\sqrt{2}(e^{\pi}-1)$	30t 1 + Suntust H	
b) i	nitial speed = $2\sqrt{2}$, termi	nal speed = $2\sqrt{2}e^{\pi}$; distance traveled = $3\sqrt{2}(e^{\pi}-1)$	- Zantiost	
c) in	nitial speed = $\frac{9\sqrt{2}}{2}$, term	inal speed = $9/2 \sqrt{2} e^{\pi}$; distance traveled = $3 \sqrt{2} (e^{\pi} -$	1) Speed: 3et V2	
d) 🖉 i	nitial speed = $3\sqrt{2}$, termi	nal speed = $3\sqrt{2}e^{\pi}$; distance traveled = $3\sqrt{2}(e^{\pi}-1)$	$dist = \int_{0}^{\pi} 3\sqrt{2} e^{t} dt$	
e) 🔵 in	nitial speed = $\frac{3\sqrt{2}}{2}$, term	inal speed = $3/2 \sqrt{2} e^{\pi}$; distance traveled = $3/2 \sqrt{2} (e^{\pi} - 1)^{-1}$	- 1)	
Questi	on 8			
You did not answer the question.				
Find th	he surface of revolution if	The curve $x(t) = t^2 - 2$, $y(t) = 2t$, for $t \in [0, 4]$ is	revolved around	
the <i>x</i> -a	axis.	X'(+) = 2 + W'(+) = 2		
a) 7	$x\left(\frac{68\sqrt{17}}{3} - \frac{4}{3}\right)$ $2x\left(\frac{68\sqrt{17}}{3} - \frac{4}{3}\right)$	$\int_{0}^{4} 2\pi (2t) \sqrt{(2t)^{2} + (2)^{2}}$	dt	
c) 🔾	$\left(\frac{68\sqrt{17}}{3}-\frac{4}{3}\right)$	$\int_0^4 4\pi t \sqrt{4t^2 + 4} dt$		
d) () 7	$\left(\frac{34\sqrt{17}}{3} - \frac{2}{3}\right)$	$8\pi \int_0^4 t \sqrt{t^2 + 1} dt$	$u = t^2 + 1$ $du = 2t dt$	
e) 02	$2\pi\left(\frac{34\sqrt{17}}{3}-\frac{2}{3}\right)$	4π [¹⁷ 1	du	

Question 9

You did not answer the question.

Find the surface of revolution if the curve x(t) = 3t + 2, y(t) = 5t, for $t \in [0, 4]$ is revolved around the *x*-axis. $\int_{0}^{4} 2\pi (5t) \sqrt{(3)^{2} + (5)^{2}} dt$

a)
$$\bigcirc 160\sqrt{34}\pi$$

- **b**) \bigcirc 80 $\sqrt{34}$
- c) $\bigcirc 40\sqrt{34}\pi$
- **d**) \bigcirc 80 $\sqrt{34}\pi$
- e) $\bigcirc 40\sqrt{34}$

Question 10

You did not answer the question.

Find the surface of reasons around the <i>x</i> -axis.	evolution if the curve $x(t) = 5 \cos(t)$, $y(t) = 5 \sin(t)$, for $t \in \left[0, \frac{\pi}{2}\right]$ is revolved
a) $\bigcirc 5\pi$	$2\pi(5sunt)/25sun^{2}t + 25cos^{2}t$ dt
b) 25π	
c) $\bigcirc 100\pi$	$50\pi \text{ sunt } dt = -50\pi \text{ cost}$
d) _ 50π	0
e) $\bigcirc \frac{5\pi}{2}$	$0 - (-50\pi) = 50\pi$