10.5 - Arc length for Parametric Curves

Recall: Formula for finding the arc length of a curve in rectangular form:

$$
L(c)=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \quad y=f(x)
$$

Formula for finding the arc length of a curve in polar form:

$$
L(c)=\int_{\alpha}^{\beta} \sqrt{[r(\theta)]^{2}+\left[r^{\prime}(\theta)\right]^{2}} d \theta \quad r(\theta)=
$$

New: Formula for finding the arc length of a curve in parametric form:

$$
\begin{gathered}
L(c)=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t \\
\iota \text { values }
\end{gathered}
$$

Velocity and Speed (magnitude of velocity)

If the position of a particle at time t is given by

$$
s(t)=(x(t), y(t))
$$

then the velocity is given by

$$
v(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)
$$

and the speed is given by

$$
\text { speed }=\|v(t)\|=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}}
$$

Let C be a curve in the upper half-plane (see figure). The curve can meet the x axis, but only at a finite number of points. We will assume that C is parametrized by a pair of continuously differentiable functions

$$
x=x(t), \quad y=y(t), \quad t \in[c, d] .
$$

Furthermore, we will assume that C is simple: no two values of t between c and d give rise to the same point of C; that is, the curve does not intersect itself.

If we revolve C about the x-axis, we obtain a surface of revolution. The area of that surface is given by the formula

$$
A=\int_{c}^{d} 2 \pi y(t) \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t .
$$

PRINTABLE VERSION
Quiz $26-10.5$
You scored 0 out of 100
Question 1 did not answer the question. $\quad x^{\prime}(t)=2 \quad y^{\prime}(t)=7$
Find the length of the curve of $x(t)=2 t, y(t)=7 t-4$, for $t \in[0,6]$.
a)$6 \sqrt{53}$

$$
\int_{0}^{6} \sqrt{2^{2}+7^{2}}
$$

b)$9 \sqrt{53}$
c)$12 \sqrt{53}$
d)$18 \sqrt{53}$
e)$3 \sqrt{53}$
Question 2
You did not answer the question.
Find the length of the curve of $x(t)=2 t^{3}, y(t)=4 t^{2}+4$, for $t \in[0,1]$.
a) $\frac{61}{9}$

$$
\begin{aligned}
& x^{\prime}(t)=6 t^{2} \quad y^{\prime}(t)=8 t \\
& \int_{0}^{1} \sqrt{36 t^{4}+64 t^{2}} d t=\frac{1}{12} \int_{0 .}^{1} 7 \cdot t \sqrt{36 t^{2}+64} \cdot d t \\
& \quad u=36 t^{2}+64 \\
& d u=72 t d t \\
& \frac{1}{12} \int_{64}^{100} \sqrt{u} d u=\left.\frac{1}{12} \cdot \frac{2}{3} u^{3 / 2}\right|_{64} ^{100}
\end{aligned}
$$

b) $\frac{61}{27}$
c) $\frac{122}{9}$
d) $\frac{244}{27}$
e)$\frac{122}{27}$

$$
\text { https://www.casa.uh.edu/CourseWare2008/Root/Pages/CW/Users/Student/Grades/PrintTest.htm } \frac{10}{108} \cdot(10012) \text { Page } 1 \text { of } 5
$$

Question 3

You did not answer the question.
Find the length of the curve of $x(t)=3 \cos (4 t), y(t)=3 \sin (4 t)$, for $t \in[0,2]$.
a) 48

$$
x^{\prime}(t)=-12 \operatorname{sen}(4 t) \quad y^{\prime}(t)=12 \cos (4 t)
$$

b) 24

c) 72
d) $96 \quad \int_{0}^{2} \sqrt{144\left(\sin ^{2}(4 t)+\cos ^{2}(4 t)\right)} d t$
e) 6

$$
\int_{0}^{2} \sqrt{144} d t=\int_{0}^{2} 12 d t=|2 t|_{0}^{2}
$$

Question 4

You did not answer the question.
Which of the following integrals will find the length of the curve of
$x(t)=2 t-1, y(t)=t^{2}+3 t$, for $t \in[2,6]$?
$x^{\prime}(t)=2 \quad y^{\prime}(t)=2 t+3$
a) $\int_{2}^{6} \sqrt{4+(2 t+3)^{2}} \mathrm{~d} t$
b) $\int_{2}^{6} \sqrt{(2 t-1)^{2}+\left(t^{2}+3 t\right)^{2}} \mathrm{~d} t$
c) $\int_{2}^{6} \sqrt{4+\left(t^{2}+3 t\right)^{2}} \mathrm{~d} t$
d) $\int_{2}^{6} \sqrt{(2 t-1)^{2}+(2 t+3)^{2}} \mathrm{~d} t$
e) $\int_{2}^{6} \sqrt{(2 t+3)^{2}+1} \mathrm{~d} t$

Question 5

You did not answer the question.
Which of the following integrals will find the length of the curve of
$x(t)=3-\cos (t), y(t)=6 t+\sin (t)$, for $t \in[3,6]$?
a) $\int_{3}^{6} \sqrt{2(\cos (t))^{2}+6 \cos (t)+45} \mathrm{~d} t$
b) $\int_{3}^{6} \sqrt{(\cos (t))^{2}+12 \cos (t)+37} \mathrm{~d} t$
c) $\int_{3}^{6} \sqrt{10+12 t \sin (t)+36 t^{2}-6 \cos (t)} \mathrm{d} t$
d) $\int_{3}^{6} \sqrt{(\sin (t))^{2}+(6 t+\sin (t))^{2}} \mathrm{~d} t$
e) $\int_{3}^{6} \sqrt{37+12 \cos (t)} \mathrm{d} t$

Question 6

You did not answer the question.

The equations $x(t)=t^{2}$ and $y(t)=t^{3}$ give the position of a particle at each time t from $t=0$ to $t=3$.
Find the initial speed of the particle, the terminal speed, and the distance traveled.

$$
\left(t^{2}, t^{3}\right) \quad v(t)=\left(2 t, 3 t^{2}\right) \quad\|v(t)\|=\sqrt{4 t^{2}+9 . t^{4}}
$$

a) initial speed $=0$, terminal speed $=2 \sqrt{ } 85$; distance traveled $=\frac{85 \sqrt{ } 85}{27}-\frac{8}{27}$ term. speed
b) initial speed $=0$, terminal speed $=\frac{9 \sqrt{85}}{2}$; distance traveled $=\frac{85 \sqrt{ } 85}{27}-\frac{8}{27}$
c) initial speed $=0$, terminal speed $=3 \sqrt{ } 85$; distance traveled $=\frac{85 \sqrt{ } 85}{27}-\frac{8}{27}$
d) initial speed $=0$, terminal speed $=6 \sqrt{ } 85$; distance traveled $=\frac{170 \sqrt{ } 85}{27}-\frac{16}{27}$
e) initial speed $=0$, terminal speed $=\frac{3 \sqrt{85}}{2}$; distance traveled $=\frac{85 \sqrt{ } 85}{54}-\frac{4}{27}$

Question 7	$-\int_{0}^{3} \sqrt{4 t^{2}+9 t^{4}} d t=\int_{0}^{3} t \sqrt{4+9 t^{2}} d t$
You did not answer the question.	
$\left(\right.$ see $\left.^{\# 2} 2\right)$	

$X^{\prime}(t)=3 e^{t} \sin t+3 e^{t} \cos t=3 e^{t}(\sin t+\cos t) \quad y^{\prime}(t)=3 e^{4 / 801016,7.14 a n}(\cos t-\operatorname{sen} t)$
The equations $x(t)=3 \mathrm{e}^{t} \sin (t)$ and $y(t)=3 \mathrm{e}^{t} \cos (t)$ give the position of a particle at each time t from $t=0$ to $t=\pi$. Find the initial speed of the particle, the terminal speed, and the distance traveled,
$\sqrt{9 e^{2 t}\left(\sin ^{2} t+2 \operatorname{sen} t \cos t+\cos ^{2} t\right)+9 e^{2 t}\left(\cos ^{2} t-2 \sin t \cos t+\operatorname{sen}^{2} t\right)}$
a) initial speed $=6 \sqrt{ } 2$, terminal speed $=6 \sqrt{ } 2 \mathrm{e}^{\pi}$; distance traveled $=6 \sqrt{2}\left(\mathrm{e}^{\pi}-1\right) \overline{3 e^{t} \sqrt{\mid}+2 \ln n t l o s t+1}$
b) initial speed $=2 \sqrt{ } 2$, terminal speed $=2 \sqrt{ } 2 \mathrm{e}^{\pi}$; distance traveled $=3 \sqrt{2}\left(\mathrm{e}^{\pi}-1\right)$
c) initial speed $=\frac{9 \sqrt{2}}{2}$, terminal speed $=9 / 2 \sqrt{ } 2 \mathrm{e}^{\pi}$; distance traveled $=3 \sqrt{2}\left(\mathrm{e}^{\pi}-1\right)$ Speed: Se ${ }^{t} \sqrt{2}$
d) \curvearrowleft initial speed $=3 \sqrt{ } 2$, terminal speed $=3 \sqrt{ } 2 \mathrm{e}^{\pi}$; distance traveled $=3 \sqrt{2}\left(\mathrm{e}^{\pi}-1\right) d$ st $=\int_{0}^{\pi} 3 \sqrt{2} e^{t} d t$
е) initial speed $=\frac{3 \sqrt{2}}{2}$, terminal speed $=3 / 2 \sqrt{ } 2 \mathrm{e}^{\pi}$; distance traveled $=3 / 2 \sqrt{2}\left(\mathrm{e}^{\pi}-1\right)$

Question 8
You did not answer the question.
Find the surface of revolution if the curve $x(t)=t^{2}-2, y(t)=2 t$, for $t \in[0,4]$ is revolved around the x-axis.

$$
x^{\prime}(t)=2 t \quad y^{\prime}(t)=2
$$

a) $\pi\left(\frac{68 \sqrt{17}}{3}-\frac{4}{3}\right)$
b) $2 \pi\left(\frac{68 \sqrt{17}}{3}-\frac{4}{3}\right)$
c) $\left(\frac{68 \sqrt{17}}{3}-\frac{4}{3}\right)$
d) $\pi\left(\frac{34 \sqrt{17}}{3}-\frac{2}{3}\right)$
е) $2 \pi\left(\frac{34 \sqrt{17}}{3}-\frac{2}{3}\right)$

$$
\int_{0}^{4} 2 \pi(2 t) \sqrt{(2 t)^{2}+(2)^{2}} d t
$$

$$
\int_{0}^{4} 4 \pi t \sqrt{4 t^{2}+4} d t
$$

$$
8 \pi \int_{0}^{4} t \sqrt{t^{2}+1} d t
$$

$$
u=t^{2}+1
$$

$$
d u=2 t d t
$$

$4 \pi \int_{1}^{[1} \sqrt{u} d u$

Question 9

You did not answer the question.
Find the surface of revolution if the curve $x(t)=3 t+2, y(t)=5 t$, for $t \in[0,4]$ is revolved around the x-axis.
a)$160 \sqrt{34} \pi$

$$
\int_{0}^{4}
$$

$$
2 \pi(5 t) \sqrt{(3)^{2}+(5)^{2}} d t
$$

b)$80 \sqrt{34}$
c)$40 \sqrt{34} \pi$
d)$80 \sqrt{34} \pi$
e)$40 \sqrt{34}$

Question 10
You did not answer the question.
Find the surface of revolution if the curve $x(t)=5 \cos (t), y(t)=5 \sin (t)$, for $t \in\left[0, \frac{\pi}{2}\right]$ is revolved around the x-axis.
a)5π
b)25π
c)100π
d)50π
e)$\frac{5 \pi}{2}$

$$
\int_{\pi / 2}^{\pi}
$$

$$
0
$$

$$
2 \pi(5 \sin t) \sqrt{25 \operatorname{sen}^{2} t+25 \cos ^{2} t} d t
$$

$$
\int_{0}^{\pi / 2} 50 \pi \sin t d t=-\left.50 \pi \cos t\right|_{0} ^{\pi / 2}
$$

$$
0-(-50 \pi)=50 \pi
$$

