Math 1432 Exam 4 Review

1. Determine whether the given series converges or diverges; state which test you are using to determine convergence/divergence and show all work.

a.
$$\sum \frac{k^2 2^k}{(k+1)!}$$

b. $\sum \frac{3^{k+1}}{(k+1)^2 e^k}$
c. $\sum \frac{\ln n}{n}$
d. $\sum \frac{2n+1}{\sqrt{n^5 + 3n^3 + 1}}$
e. $\sum \frac{4n^2 + 1}{n^3 - n}$
f. $\sum \frac{4n^2 + 1}{n^5 - n}$
g. $\sum \left(1 + \frac{1}{n}\right)^n$
h. $\sum \frac{n^3}{3^n}$
i. $\sum \frac{1}{\sqrt[4]{n^3}}$

2. Determine if the following series (A) converge absolutely, (B) converge conditionally or (C) diverge.

a.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sqrt{n}}{n+3}$$

b.
$$\sum_{n=1}^{\infty} \frac{\cos \pi n}{n^2}$$

c.
$$\sum_{n=0}^{\infty} \frac{4n(-1)^n}{3n^2 + 2n + 1}$$

d.
$$\sum_{n=0}^{\infty} \frac{3(-1)^n}{\sqrt{3n^2 + 2n + 1}}$$

e.
$$\sum_{n=0}^{\infty} \frac{3n(-1)^n}{\sqrt{3n^2 + 2n + 1}}$$

3. Find the radius of convergence and interval of convergence for the following Power series:

a.
$$\sum_{n=0}^{\infty} \frac{(x-2)^{n+1}}{(n+1)3^{n+1}}$$

b.
$$\sum_{n=0}^{\infty} \frac{1}{3^n} (x-1)^n$$

c.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{4^n}$$

d.
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n n!}{n^n}$$

4. Give the derivative of each power series below:

a.
$$\sum_{n=0}^{\infty} \frac{(n+1)x^n}{n^2+2}$$

b.
$$\sum_{n=0}^{\infty} \frac{x^n}{2n+1}$$

- 5. For each of the problems in number 4, give the antiderivative F of the power series so that F(0)=0.
- 6. Use the Taylor series expansion (in powers of x) for $f(x) = e^x$ to find the Taylor series expansion $f(x) = \cosh x$.
- 7. Determine the Taylor polynomial in powers of x of degree 8 for the function $f(x) = x \cos(x^2)$.
- 8. Determine the Taylor polynomial in powers of x of degree 5 for the function

$$f(x) = \frac{1 - e^x}{x}$$

- 9. Determine the Taylor polynomial in powers of x- π of degree 4 for the function $f(x) = \sin(2x)$.
- 10. Assume that *f* is a function such that $|f^{(n)}(x)| \le 2$ for all *n* and *x*.
 - a. Estimate the maximum possible error if $P_4(0.5)$ is used to approximate f(0.5)
 - b. Find the least integer *n* for which $P_n(0.5)$ approximates f(0.5) with an error less than 10^{-3} .
- 11. Use the values in the table below and the formula for Taylor polynomials to give the 5^{th} degree Taylor polynomial for *f* centered at x = 0.

f(0)	f '(0)	f " (0)	f ''' (0)	$f^{(4)}(0)$	$f^{(5)}(0)$
1	0	-2	3	-4	1

- 12. Write the equation in polar coordinates:
 - a. $x^{2} + y^{2} = 4$ b. $x^{2} + y^{2} = 4x$ c. $(x^{2} + y^{2})^{2} = 4xy$ d. x = 4y
- 13. Write the given equations in rectangular coordinates:
 - a. $r = -2\sin\theta$
 - b. $r\cos\theta = 5$
- 14. Recognize all types of polar graphs.
- 15. Given $r = 4 8\cos\theta$, give the formula (only) for the area inside the inner loop.
- 16. Given $r = 2\sin(3\theta)$, give the formula (only) for the area of one petal.
- 17. Find the arc length for $r = 2 \sec(\theta)$, $\theta \in \left[0, \frac{\pi}{4}\right]$
- 18. Do the following problems from section 10.3: #7,9,11,15,43,49