Math 1432

Exam 4 Review

1. Determine whether the given series converges or diverges; state which test you are using to determine convergence/divergence and show all work.
a. $\sum \frac{k^{2} 2^{k}}{(k+1)!}$
b. $\sum \frac{3^{k+1}}{(k+1)^{2} e^{k}}$
c. $\sum \frac{\ln n}{n}$
d. $\sum \frac{2 n+1}{\sqrt{n^{5}+3 n^{3}+1}}$
e. $\sum \frac{4 n^{2}+1}{n^{3}-n}$
f. $\sum \frac{4 n^{2}+1}{n^{5}-n}$
g. $\sum\left(1+\frac{1}{n}\right)^{n}$
h. $\sum \frac{n^{3}}{3^{n}}$
i. $\quad \sum \frac{1}{\sqrt[4]{n^{3}}}$
2. Determine if the following series (A) converge absolutely, (B) converge conditionally or (C) diverge.
a. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sqrt{n}}{n+3}$
b. $\quad \sum_{n=1}^{\infty} \frac{\cos \pi n}{n^{2}}$
c. $\sum_{n=0}^{\infty} \frac{4 n(-1)^{n}}{3 n^{2}+2 n+1}$
d. $\sum_{n=0}^{\infty} \frac{3(-1)^{n}}{\sqrt{3 n^{2}+2 n+1}}$
e. $\sum_{n=0}^{\infty} \frac{3 n(-1)^{n}}{\sqrt{3 n^{2}+2 n+1}}$
3. Find the radius of convergence and interval of convergence for the following Power series:
a. $\quad \sum_{n=0}^{\infty} \frac{(x-2)^{n+1}}{(n+1) 3^{n+1}}$
b. $\sum_{n=0}^{\infty} \frac{1}{3^{n}}(x-1)^{n}$
c. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{4^{n}}$
d. $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n} n!}{n^{n}}$
4. Give the derivative of each power series below:
a. $\sum_{n=0}^{\infty} \frac{(n+1) x^{n}}{n^{2}+2}$
b. $\sum_{n=0}^{\infty} \frac{x^{n}}{2 n+1}$
5. For each of the problems in number 4, give the antiderivative F of the power series so that $\mathrm{F}(0)=0$.
6. Use the Taylor series expansion (in powers of x) for $f(x)=e^{x}$ to find the Taylor series expansion $f(x)=\cosh x$.
7. Determine the Taylor polynomial in powers of x of degree 8 for the function $f(x)=x-\cos \left(x^{2}\right)$.
8. Determine the Taylor polynomial in powers of x of degree 5 for the function $f(x)=\frac{1-e^{x}}{x}$
9. Determine the Taylor polynomial in powers of $x-\pi$ of degree 4 for the function $f(x)=\sin (2 x)$.
10. Assume that f is a function such that $\left|f^{(n)}(x)\right| \leq 2$ for all n and x.
a. Estimate the maximum possible error if $P_{4}(0.5)$ is used to approximate $f(0.5)$
b. Find the least integer n for which $P_{n}(0.5)$ approximates $f(0.5)$ with an error less than 10^{-3}.
11. Use the values in the table below and the formula for Taylor polynomials to give the $5^{\text {th }}$ degree Taylor polynomial for f centered at $x=0$.

| $f(0)$ | $f^{\prime}(0)$ | $f^{\prime \prime}(0)$ | $f^{\prime \prime \prime}(0)$ | $f^{(4)}(0)$ | $f^{(5)}(0)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | -2 | 3 | -4 | 1 |

12. Write the equation in polar coordinates:
a. $x^{2}+y^{2}=4$
b. $x^{2}+y^{2}=4 x$
c. $\left(x^{2}+y^{2}\right)^{2}=4 x y$
d. $x=4 y$
13. Write the given equations in rectangular coordinates:
a. $r=-2 \sin \theta$
b. $r \cos \theta=5$
14. Recognize all types of polar graphs.
15. Given $r=4-8 \cos \theta$, give the formula (only) for the area inside the inner loop.
16. Given $r=2 \sin (3 \theta)$, give the formula (only) for the area of one petal.
17. Find the arc length for $r=2 \sec (\theta), \quad \theta \in\left[0, \frac{\pi}{4}\right]$
18. Do the following problems from section 10.3: \#7,9,11,15,43,49
