Math 1432
www. math whedw/valmus

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\cdots
$$

$K \quad f^{k}(x) \quad f^{k}(-1) \frac{f^{k}(-1)}{K!}$
Centered at $x=0$
$0 e^{-2 x} \quad e^{2} \quad e^{2}$
$1-2 e^{-2 x}-2 e^{2}-2 e^{2}$
$24 e^{-2 x} \quad 4 e^{2} \quad \frac{4 e^{2}}{2!}$
$3-8 e^{-2 x}-8 e^{2}-\frac{-8 e^{2}}{3!}$

Public Page
$4 \quad 16 e^{-2 x} \quad 16 e^{2} \quad \frac{16 e^{2}}{4!} \sum_{k=0}^{0} \frac{2^{k} e^{2}(-1)^{k}(x+1)^{k}}{k!}$

Ch 10 - Polar 2 Parametric
10.1 - Polar graphing

$$
\left.\begin{array}{c}
*=r \cos \theta \\
y=r \sin \theta
\end{array}\right\}
$$

When plotting graph start	θ	r
0	-	

circles

$$
r=a
$$

$$
\begin{aligned}
& r=2 a \cos \theta \\
& =\underbrace{\pi=2}_{2 a} 2
\end{aligned}
$$

Public Page 2

$$
\left[\begin{array}{l|l}
\text { sion } & \theta \\
\rightarrow 0 & 2 a \\
\pi / 2 & 0 \\
\text { finish } \rightarrow \pi & 2 a
\end{array}\right.
$$

θ	r
0	0
$\pi / 2$	$2 a$
π	0

Flowers

$$
\begin{aligned}
& r=a \cos (m \theta) \leqslant \text { alwayp hear } a \\
& r=a \sin (m \theta) .
\end{aligned}
$$

$|a|=$ length or petals

$$
m=\left\{\begin{array}{l}
m \text { even } \rightarrow 2 m \text { petals } \\
m \text { odd } \rightarrow m \text { petals }
\end{array}\right.
$$

$$
r=-3 \cos (5 \theta)
$$

Limagous

$$
\begin{aligned}
& r=a+b \cos \theta \\
& r=a+b \sin \theta
\end{aligned}
$$

Public Page 4

Q21\#7
Assume that $f(x)=\ln (1+x) \mid$ is the given function and that $P_{n} \mid$ represents the nth Taylor Polynomial centered at $x=00$ Find the least integer $n \mid$ for which $P_{n}(0.5)$ approximates $\ln (1.5)$ to within 0.0001 .

$$
\left.\begin{aligned}
& \quad \ln (1,5)=\ln (1+, 5) \quad x=, 5 \\
& f(x)=\ln (1+x) \\
& f^{\prime}(x)=\frac{1}{1+x}
\end{aligned} \quad \right\rvert\, f^{(n+1)(x) \left\lvert\,=\frac{}{4}\right.}
$$

$$
f^{\prime \prime}(x)=\frac{-1}{(1+x)^{2}}
$$

Something between $\underline{0}+.5$

$$
f^{\prime \prime \prime}(x)=\frac{-1 .-2}{(1+x)^{3}}
$$

$$
m=n!
$$

$$
f^{(4)}(x)=\frac{-1 \cdot-2 \cdot-3}{(1+x)^{4}}
$$

$$
\frac{n!\sqrt{n}_{n+1}^{5}}{(n+1)!}<, 000 n
$$

Public Page $5 \quad f^{(n)}(X)=\frac{(-1)^{n+1}(n-1)!}{(1+x)^{n}}$

PRINTABLE VERSION
Quiz 22
You scored 100 out of 100
Question 1
Your answer is CORRECT.
Find the rectangular coordinates for the point given in polar coordinates: $\left.\left[5, \frac{3 \pi}{2}\right] \right\rvert\,$
a)$(-1,-4)$ $x=r \cos \theta, \quad y=r \sin \theta$
b)$(0,5)$
c)$(0,-5)$
d)$(1,-5) \mid$
e)$(-1,-6)$

Question 2

Your answer is CORRECT.

Give all possible polar coordinates for the point $(1,-1) \mid$ given in rectangular coordinates.
a) $\int\left[-\sqrt{2}, \frac{7 \pi}{4}+2 n \pi\right], \left.\left[\sqrt{2}, \frac{3 \pi}{4}+2 n \pi\right] \right\rvert\,$

$$
\text { b) }\left|\left[2 \sqrt{2}, \frac{7 \pi}{4}+2 n \pi\right],\left[-2 \sqrt{2}, \frac{3 \pi}{4}+2 n \pi\right]\right|
$$

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& 1^{2}+(-1)^{2}=2=r^{2} r=\sqrt{2} \\
& 1=\sqrt{2} \cos \theta \quad-1=\sqrt{2} \sin \theta
\end{aligned}
$$

c) $\left[\frac{\sqrt{2}}{2},-\frac{7 \pi}{4}+2 n \pi\right], \left.\left[-\frac{\sqrt{2}}{2},-\frac{3 \pi}{4}+2 n \pi\right] \right\rvert\,$
d) $\left[\sqrt{2}, \frac{7 \pi}{4}+2 n \pi\right], \left.\left[-\sqrt{2}, \frac{3 \pi}{4}+2 n \pi\right] \right\rvert\,$
e) $\left[\sqrt{2}, \frac{3 \pi}{4}+2 n \pi\right], \left.\left[-\sqrt{2}, \frac{7 \pi}{4}+2 n \pi\right] \right\rvert\,$

$$
\frac{1}{\sqrt{2}}=\frac{\cos \theta}{-\frac{1}{\sqrt{2}}}=\sin \theta
$$

Question 3
Your answer is CORRECT.
Find the point symmetric to $\left.\left[\frac{7}{2}, \frac{\pi}{6}\right] \right\rvert\,$ about the origin.
a)$\left.\left[\frac{7}{2}, \frac{\pi}{6}\right] \right\rvert\,$
b)$\left.\left[\frac{7}{2}, \frac{5 \pi}{6}\right] \right\rvert\,$
c)$\left.\left[\frac{7}{2}, \frac{2 \pi}{3}\right] \right\rvert\,$
d)$\left.\left[7, \frac{2 \pi}{3}\right] \right\rvert\,$
e)

- $\left.\left[\frac{7}{2}, \frac{7 \pi}{6}\right] \right\rvert\,$

Question 4
Your answer is CORRECT.
Write the equation $(x-11)^{2}+y^{2}=121 \mid$ in polar coordinates.
a)

$$
r=121 \mid
$$

b)$r=22 \sin (\theta)$
c)$r=11 \cos ^{2}(\theta) \sin (\theta)$
d)$r=22 \cos (\theta)$
e)$r=11 \sin (\theta)+121$

Question 5
Your answer is CORRECT.
Write the equation $2 r \cos (\theta)=9 \mid$ in rectangular coordinates.
a)$x^{2}=9$
b)$\left.x=\frac{9}{2} \right\rvert\,$
c)$x=\frac{2}{9}$
d)$\left.y=\frac{9}{2} \right\rvert\,$
e)$y=\frac{3}{2}$

Question 6
Your answer is CORRECT.
Which of the following shows the correct sketch of the polar curve $r=5 \cos (\theta)$?

a)

Question 7
Your answer is CORRECT.

Question 8

Your answer is CORRECT.

Which of the following shows the correct sketch of the polar curve $r=5-\frac{5}{2} \cos \theta$?

e)

Question 9
Your answer is CORRECT.
Which of the following shows the correct sketch of the polar curve $r=-5 \cos (3 \theta) \mid$ for $\left.0 \leq \theta \leq \frac{\pi}{2} \right\rvert\,$?

$\pi / 60$
$\pi / 45 \sqrt{2} / 2$
$\pi / 3 / 5$
$\pi / 20$

e)

Question 10
Your answer is CORRECT.
Find the rectangular coordinates of the point(s) of intersection of the polar curves $r=11 \sin (\theta)$ and $r=-11 \cos (\theta) \mid$

d)$(0,0) \mid$ and $(-11,11) \mid$
е) $\cdot(0,0) \mid$ and $\left.\left(-\frac{11}{2}, \frac{11}{2}\right) \right\rvert\, \leqslant$

$$
\theta=3 \pi / 4
$$

$$
r=\| \sin \theta
$$

$$
x=r \cos \theta=11 \sin 3 \pi / 4 \cos 3 \pi / 4=-11 / 2
$$

$$
\left(\frac{1}{2}\right)^{n+1} \frac{1}{n+1} \leq \frac{1}{10,000}
$$

$$
2^{10}=1024
$$

$$
n=9: \frac{1}{2^{10}(10) \frac{1}{10,}}=\frac{1}{10}
$$

Public Page 6

