Math 1432

Bekki George
bekki@math.uh.edu 639 PGH

Office Hours:

Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html

Note: You can work out the poppers before class - answer choices will be given during class

Popper 01

1. Find the average value of the function $f(x)=x^{2}$ over the interval [0, 1].
2. Compute $\int(x+1)^{1 / 3} x d x$.
3. Which of the following represents the area of the shaded region in the figure shown?

4. The area of the region enclosed by the graphs of $y=x^{2}$ and $y=x$ is

More About Volume

Disc Method:

Revolving about the x-axis: $V=\int_{a}^{b} \pi[f(x)]^{2} d x$

Revolving about the y-axis: $V=\int_{c}^{d} \pi[g(y)]^{2} d y$

Let R be the region in the first quadrant bounded by the y-axis and the graphs of $y=x^{2}$ and $y=2$. Sketch and shade the region R. Label points on the x and y-axis.

Give the formula for the volume of the solid generated when the region R is rotated about the y-axis.

Rotate the region enclosed by $y=\sqrt{\sin x} \quad 0<x<\pi$ about the x -axis. Determine the volume of the solid formed.

Rotate the region enclosed by $y=x^{2}, y=0, x=2$ about the x-axis. Give the formula for the volume of the solid formed.

Consider the region in the first quadrant bounded by $y=1 / 2 x-1$, $y=2$. Give the formula for the volume of the solid formed by revolving this region around the y-axis.

Consider the region in the first quadrant enclosed by $y=4-x^{2}$. Give the formula for the volume of the solid formed by revolving this region about the x-axis.

Now consider the region in the first quadrant enclosed by $y=4-x^{2}$. Give the formula for the volume of the solid formed by revolving this region about the y-axis.

Consider the region enclosed by $y=x^{2}, y=0, x=3$. Give the formula for the volume of the solid formed by revolving this region around the line $x=3$.

Washer Method

Revolving about the x-axis: $V=\int_{a}^{b} \pi\left([f(x)]^{2}-[g(x)]^{2}\right) d x$
Revolving about the y-axis: $V=\int_{c}^{d} \pi\left([f(y)]^{2}-[g(y)]^{2}\right) d y$

Consider the region enclosed by $y=2, y=4, x=0, x=3$. Find the volume of the solid formed by revolving this region around the x-axis.

(popper)

5. The region enclosed by the x-axis, the line $x=3$, and the curve $y=\sqrt{x}$ is rotated about the x -axis. What is the volume of the solid generated?
