Math 1432

Bekki George
bekki@math.uh.edu
639 PGH

Office Hours:

Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html
Email questions for Wednesday's notes before Tuesday at 4pm

Popper 08

1. $\int x \mathrm{e}^{x^{2}} d x=$

What if we had $\int x \mathrm{e}^{x} d x ?$

Section 8.1 - Integration by parts
("Undoing" the product rule)

Lets start with the product rule:

$$
\frac{d}{d x}(u v)=u \frac{d}{d x} v+v \frac{d}{d x} u
$$

So, the integration by parts formula is:

$$
\int u d v=u v-\int v d u
$$

We use it to "undo" the product rule.

1. Reduction to integrate

$$
\begin{aligned}
& x^{n} \sin (a x), x^{n} \cos (a x), x^{n} e^{a x} \\
& \text { polynomial } \cdot \sin (a x), \text { polynomial } \cdot \cos (a x), \text { polynomial } \cdot e^{a x}
\end{aligned}
$$

2. Cycling to integrate

$$
\cos (a x) \sin (b x), \cos (a x) e^{b x}, \sin (a x) e^{b x}
$$

3. Change of Form to integrate

$$
\ln (x) f(x), \arctan (x) f(x), \arcsin (x) f(x)
$$

(where $f(x)$ has a simple antiderivative)

How do you know what to pick for u and for $d v$?
"Shortcut"

ILATE

I -
L -
A -
T-
E-

1. $\int x e^{x} d x$

Popper08

2. $\int \frac{1}{9+x^{2}} d x=$
3. Give the formula for the area enclosed by $y=x^{2}$ and $y=3-x^{2}$
4. Give the x value of the centroid for the region enclosed by $y=x^{2}$ and $y=3-x^{2}$
5. Give the formula for the volume when the region enclosed by $y=x^{2}$ and $y=3-$ x^{2} in the first quadrant is revolved about the y-axis
