Math 1432

Bekki George bekki@math.uh.edu 639 PGH

Office Hours:

Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html

Email questions for Wednesday's notes before Tuesday at 4pm

Popper08

$$\int x e^{x^2} dx =$$

What if we had $\int x e^x dx$?

Section 8.1 - Integration by parts

("Undoing" the product rule)

Lets start with the product rule:

$$\frac{d}{dx}(uv) = u\frac{d}{dx}v + v\frac{d}{dx}u$$

So, the integration by parts formula is:

$$\int u \, dv = uv - \int v \, du$$

We use it to "undo" the product rule.

1. Reduction to integrate

$$x^{n}\sin(ax), x^{n}\cos(ax), x^{n}e^{ax},$$

 $polynomial \cdot \sin(ax), polynomial \cdot \cos(ax), polynomial \cdot e^{ax}$

2. Cycling to integrate

$$\cos(ax)\sin(bx)$$
, $\cos(ax)e^{bx}$, $\sin(ax)e^{bx}$

3. Change of Form to integrate

$$\ln(x) f(x)$$
, $\arctan(x) f(x)$, $\arcsin(x) f(x)$
(where $f(x)$ has a simple antiderivative)

How do you know what to pick for u and for dv?

"Shortcut"

ILATE

I –

L –

A –

T –

 E -

 $1. \int xe^x dx$

Popper08

2.
$$\int \frac{1}{9+x^2} dx =$$

- 3. Give the formula for the area enclosed by $y=x^2$ and $y=3-x^2$
- 4. Give the x value of the centroid for the region enclosed by $y=x^2$ and $y=3-x^2$
- 5. Give the formula for the volume when the region enclosed by $y=x^2$ and $y=3-x^2$ in the first quadrant is revolved about the y axis