Math 1432

Bekki George
bekki@math.uh.edu
639 PGH

Office Hours:
Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html

The sequence $\left\{a_{n}\right\}$ is said to be

- increasing if $a_{n}<a_{n+1}$ for all n,
- non-decreasing if $a_{n} \leq a_{n+1}$ for all n,
- decreasing if $a_{n}>a_{n+1}$ for all n,
- non-increasing if $a_{n} \geq a_{n+1}$ for all n.

A sequence that satisfies any of these conditions is called monotonic.
Increasing Sequence: $a_{1}<a_{2}<a_{3}<\ldots<a_{n}<a_{n+1}<\ldots$
Non-decreasing Sequence: $a_{1} \leq a_{2} \leq a_{3} \leq \ldots \leq a_{n} \leq a_{n+1} \leq \ldots$
Decreasing Sequence: $a_{1}>a_{2}>a_{3}>\ldots>a_{n}>a_{n+1}>\ldots$
Non-increasing Sequence: $\quad a_{1} \geq a_{2} \geq a_{3} \geq \ldots \geq a_{n} \geq a_{n+1} \geq \ldots$

In an increasing sequence, the GLB is the first term, and if there is a limit, then it is the LUB.

In a decreasing sequence, the LUB is the first term, and if there is a limit, then it is the GLB.

If a sequence has a limit, then the sequence is bounded. BUT, if a sequence is bounded, it does not necessarily have a limit.

The limit of a sequence is a number that the sequence values a_{n} tend towards as $\mathrm{n} \rightarrow \infty$.

Find the GLB and LUB if they exist:

1. $\mathrm{S}=\{1,2,3,4\}$
2. $[-4,2]$
3. $(-\infty, 8)$
4. $(5, \infty)$
5. $\mathrm{S}=\{\mathrm{x}: \mathrm{x} \leq 16\}$
6. $\left\{1-\frac{2}{n}\right\}_{n=1}^{\infty}$

If a sequence has a limit, then it is bounded.

WARNING!!! The converse is not necessarily true!!!

Determine the boundedness and monotonicity.

$$
\left\{\frac{1}{n^{2}}\right\}_{n=1}^{\infty}
$$

$$
\left\{(-1)^{n}\right\}
$$

$\left\{2^{n+1}\right\}$

$$
\left\{(-1)^{2 n+1} \sqrt{n}\right\}
$$

$$
\left\{\frac{2 n-1}{3 n+2}\right\}_{n=1}^{\infty}
$$

$$
\left\{\frac{1}{2^{n}}\right\}_{n=1}^{\infty}
$$

Using Geogebra (https://www.geogebra.org/)
Sequence[$<$ Expression $>,<$ Variable $>,<$ Start Value $>,<$ End Value $>$]
Sequence[(n, formula), n, 1, , <End Value>]
$\{\sin (\mathrm{n})\}_{\mathrm{n}=1}^{\infty}$.

Give the limit of the sequence $\{\sin (\mathrm{n} \pi)\}_{\mathrm{n}=1}^{\infty}$.

Give the LUB and GLB for $\{\mathrm{n} \sin (\mathrm{n})\}_{\mathrm{n}=1}^{\infty}$.

Determine whether the sequence $\left\{\frac{2 n+(-1)^{n}}{n}\right\}_{n=1}^{\infty}$ is
a. bounded
b. monotone
c. then give the limit if it exists.

Determine whether the sequence $\left\{\frac{\sqrt{n+1}}{\sqrt{n}}\right\}_{n=1}^{\infty}$ is
a. bounded
b. monotone
c. then give the limit if it exists.

Give the limit (if it exists) of $\left\{\frac{\sin (n)}{n}\right\}_{n=1}^{\infty}$.

Give the limit (if it exists) of $\left\{\left(\frac{2}{n}\right)^{n}\right\}_{n=1}^{\infty}$

Give the limit (if it exists) of $\left\{\left(\frac{2 n^{2}-3 n+6}{3 n-16 n^{2}+12}\right)\right\}_{n=1}^{\infty}$.

Give the limit (if it exists) of $\left\{n^{n}\right\}_{n=1}^{\infty}$.

Find a formula for the general term a_{n} of $\left\{\frac{3}{2},-\frac{9}{4}, \frac{27}{8},-\frac{81}{16}, \ldots\right\}$ assuming the pattern of the first few terms continues.

Popper 17

1. Give the limit (if it exists) of $\left\{\frac{2 n^{2}+6 n}{\sqrt{2} n-n^{2}}\right\}_{n=1}^{\infty}$
2. Give the limit (if it exists) of $\left\{n^{2 n}\right\}_{n=1}^{\infty}$

Consider the sequence defined by $a_{n}=\left(\frac{2}{3}\right)^{n} \cdot(n$ starts at 1$)$
a. Write the first five terms of the sequence.
b. Determine the limit of the sequence.
c. Let $b_{n}=\frac{a_{n+1}}{a_{n}}$. Write the first five terms of this sequence.
d. Determine the limit of b_{n}.

Consider the sequence defined by $a_{n}=\left(\frac{-3}{2}\right)^{n} \cdot(n$ starts at 1$)$
a. Write the first five terms of the sequence.
b. Determine the limit of the sequence.
c. Let $b_{n}=\frac{a_{n+1}}{a_{n}}$. Write the first five terms of this sequence.
d. Determine the limit of b_{n}.

Are the following increasing, decreasing, or not monotonic?

$$
a_{n}=\frac{3 n+4}{2 n+5}
$$

$$
a_{n}=\frac{3+(-1)^{n}}{n}
$$

$$
a_{n}=\frac{\sqrt{n+1}}{5 n+3}
$$

Give an upper bound for the set of negative real numbers.

Give a lower bound for the set of negative real numbers.

Give the LUB and GLB for the set of negative real numbers.

Give the LUB and GLB of $\left\{\frac{(-1)^{n}}{n}\right\}_{n=3}^{\infty}$

Determine whether $\left\{\ln \left(\frac{2 n-1}{3 n+7}\right)\right\}_{n=1}^{\infty}$ is bounded.

Sequences can be defined recursively: one or more terms are given explicitly; the remaining ones are then defined in terms of their predecessors. Give the first six terms of the sequence and then give the nth term.
$a_{1}=1 ; a_{n+1}=1 / 2 a_{n}+1$.
3. Give the limit (if it exists) of $\left\{\frac{(-1)^{n}}{n}\right\}_{n=1}^{\infty}$.
4. Give the limit (if it exists) of $\left\{\frac{1+\sin (n)}{n}\right\}_{n=1}^{\infty}$

5. Give the LUB for $\left\{x \mid x^{2}-2 x<3\right\}$

