Math 1432

Bekki George
bekki@math.uh.edu
639 PGH

Office Hours:

Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html

POPPER 19

State whether the sequence converges as $n \rightarrow \infty$.

1. $\mathrm{e}^{\frac{-7}{n}}$.
2. $\frac{8 \ln n}{n}$
3. $\frac{5^{375 n}}{n!}$
4. $\frac{8^{n+1}}{9^{n-1}}$
5. $\int_{0}^{n} e^{-8 x} d x$
6. $\int_{-n}^{n} \frac{8}{1+x^{2}} d x$

Sequences: Let $\left\{a_{n}\right\}$ be a sequence of real numbers.
Possibilities:

1) If $\lim _{n \rightarrow \infty} a_{n}=\infty$ then $\left\{a_{n}\right\}$ diverges to infinity.
2) If $\lim _{n \rightarrow \infty} a_{n}=-\infty$, then $\left\{a_{n}\right\}$ diverges to negative infinity.
3) If $\lim _{n \rightarrow \infty} a_{n}=c$, a finite real number, then $\left\{a_{n}\right\}$ converges to c .
4) If $\lim _{n \rightarrow \infty} a_{n}$ oscillates between two numbers, then $\left\{a_{n}\right\}$ diverges by oscillation.

If a sequence has a finite limit as n approaches infinity, we say that the sequence converges.
If a sequence does not have a finite limit as n approaches infinity, then it diverges.

9.3 Infinite Series

Series vs. Sequence

First and most important - a sequence is a LIST and a series is a SUM.
Sequence: $\left\{a_{n}\right\}=a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$

Series: $\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}$
Notation for series:
\sum Sigma - means summation
$\sum_{k=0}^{n} a_{k}=$

$$
\sum_{n=0}^{\infty} a_{n}=
$$

Examples:
$\sum_{n=1}^{\infty} \frac{1}{n}=$
$\sum_{n=1}^{\infty} \frac{1}{n^{2}}=$

Properties:
$\sum_{k=0}^{n} \alpha a_{k}=\alpha \sum_{k=0}^{n} a_{k}$
$\sum_{k=0}^{n}\left(a_{k}+b_{k}\right)=\sum_{k=0}^{n} a_{k}+\sum_{k=0}^{n} b_{k}$
$\sum_{k=0}^{m} a_{k}+\sum_{k=m+1}^{n} a_{k}=\sum_{k=0}^{n} a_{k}$

The sum of a finite series is denoted by S_{n} where $S_{n}=\sum_{k=0}^{n} a_{k}$
For an infinite series, we are taking an infinite sequence $\left(a_{0}, a_{1}, a_{2}, \ldots.\right)$ and adding all the terms together. But since there are an infinite amount of terms, doing this (literally) would be impossible so we will begin by looking at the partial sums:
$S_{0}=\sum_{k=0}^{0} a_{k}=a_{0}$
$S_{1}=\sum_{k=0}^{1} a_{k}=a_{0}+a_{1}$
$S_{2}=\sum_{k=0}^{2} a_{k}=a_{0}+a_{1}+a_{2}$
!
$S_{n}=\sum_{k=0}^{n} a_{k}=a_{0}+a_{1}+a_{2}+\ldots+a_{n}$
!
If we determine that the sequence of these partial sums has a limit, then that limit would be the sum of the infinite series $\sum_{k=0}^{\infty} a_{k}$. In other words, $\sum_{k=0}^{\infty} a_{k}=\lim _{n \rightarrow \infty}\left\{S_{n}\right\}$

What is the sequence of partial sums for each?
$\sum_{k=0}^{\infty} 1=$

$$
\sum_{k=0}^{\infty} r=
$$

$\sum_{x_{2}^{2}}^{\frac{1}{2}}=$

If the sequence of partial sums converges to a finite limit L, we write
$\sum_{k=0}^{\infty} a_{k}=L$ and say that the series $\sum_{k=0}^{\infty} a_{k}$ converges to L. We call L the sum of the series. If the sequence of partial sums diverges, we say that the series $\sum_{k=0}^{\infty} a_{k}$ diverges.

THEOREM: The $k t h$ term of a convergent series tends to 0 ; namely,

$$
\text { if } \sum_{k=0}^{\infty} a_{k} \text { converges, then } a_{k} \rightarrow 0 \text { as } k \rightarrow \infty
$$

THEOREM: BASIC DIVERGENCE TEST

If $\quad a_{k} \rightarrow 0$ as $k \rightarrow \infty$, then $\sum_{k=0}^{\infty} a_{k}$ diverges.
****The Basic Divergence Test only proves divergence.****

More General Properties:

- If $\sum_{k=0}^{\infty} a_{k}$ converges and $\sum_{k=0}^{\infty} b_{k}$ converges,

$$
\text { then } \sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) \text { converges. }
$$

- If $\sum_{k=0}^{\infty} a_{k}$ converges, then $\sum_{k=0}^{\infty} \alpha a_{k}$ converges.

Ex. 1 Does $\sum_{n=1}^{\infty}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)$ converge or diverge?

Telescoping Series:

A series such as $\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\ldots$ is called a telescoping series because it collapses to one term or a few terms. If a series collapses to a finite sum, then it converges.

Ex. 2. Does the series $1-1+1-1+1 \ldots$ converge or diverge? How would we write the series using sigma notation?

Important examples:
$\int_{1}^{\infty} \frac{d x}{x}$

$$
\sum_{n=1}^{\infty} \frac{1}{n}=
$$

$$
\int_{\frac{0}{x} \frac{d x}{x^{2}}}
$$

$$
\sum_{i=1, n^{2}}^{1}=
$$

Series (SUM)

$$
\begin{aligned}
& \sum_{k=1}^{4} \frac{1}{k^{2}}= \\
& \sum_{n=1}^{6} \frac{(-1)^{n}}{5 n+1}=
\end{aligned}
$$

$$
\sum_{n=0}^{5}\left(\frac{1}{2}\right)^{n}=
$$

$$
\sum_{n=1}^{\infty}\left(\frac{-1}{2}\right)^{n}=
$$

$$
\sum_{n=1}^{\infty}(-1)^{n}=
$$

POPPER 19

7. Which of the following diverge by the BDT ?
$a \sum_{n=1}^{n}\left(-\frac{1}{2}\right)^{n}$
b. $\frac{1}{n} \frac{1}{n}$
c $\bar{\Sigma}\left(1+\frac{1}{n}\right)^{\prime}$
d $\sum_{n=1}^{n}\left(\frac{6}{11}\right)^{n}$
