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Geometric Series Test. 
 
Basic Divergence Test. 
 
p-Series Test.  
 
Integral Test.  
 
Basic Comparison Test.  
 
Limit Comparison Test. 
  
Root Test  
 
Ratio Test 

 



Alternating Series Test for Convergence: ( )
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(Note:  a non-alternating series can never converge conditionally) 
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Notes for series “growth”: 
 
Let p(k) be a polynomial in k. 

rk  for r > 1 grows much faster than p(k) 

k! grows much faster than rk, p(k) 

kk grows much faster than the others 

 
Hence,  
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ALL converge rapidly. 
 
 



 
Power Series:  
Suppose that f x( ) = 6

1− x .   

 
If you divide 1 – x into 6, you get a  
“polynomial” that continues forever.   
 
    P x( ) = 6 + 6 x + 6 x 2 + 6 x 3 + 6 x 4 + ...  
 
This result is a power series.   
 
The word series indicates that there is an infinite number of terms.   
 
The word power tells us that each term contains a power of x.   
 
The series is also a geometric series, with |r|=x, so the series will converge 
for |x|<1.   



By comparing the graphs of f x( ) = 6
1− x  and P(x) with more and more 

terms, you will see that between −1 and 1 (the interval of convergence), the 
two graphs converge. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A Power Series (centered at x=0) is a series of the form  
 

cn x
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∑ = c0 + c1x + c2 x
2 + c3x

3 + c4 x
4 + ... 

where x is a variable and the cn’s are coefficients. 
 

Note:  x n

n= 0

∞

∑ = 1
1− x   when |x|<1 

 
Using this, we can write functions in this form in sigma notation: 

Ex:  Write   
x2

4− x2  as its power series 
 
 
 
 
 



For a fixed x, the series is a series of constants and we can check for 
convergence/divergence.  The series may converge for some values of x 
and diverge for others. 
 
The sum of the series is 
f x( ) = c0 + c1x + c2 x 2 + c3x 3 + c4 x 4 + ...+ cn x

n + ... 
whose domain is the set of all x for which the series converges. 
 
f (x) resembles a polynomial, but it has infinitely many terms. 
 
Let cn = 1 for all n, we get the geometric series, centered at x = 0,  

     x n

n= 0
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∑ = 1+ x + x 2 + x 3 + x 4 + ...+ x n + ... 

 
which converges if | x | < 1 and diverges if | x | ≥ 1. 
 
 
 



A Power Series (centered at x=a) is a series of the form  
 

cn (x − a )
n
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∑ = c0 + c1 (x − a ) + c2 (x − a )
2 + c3 (x − a )

3 + ... 

 
For notation purposes, (x – a)0 = 1 even when x = a. 
 
When x = a, all the terms are 0 for n ≥ 1, so the power series always 
converges when x = a. 
 
 
 
 
 
 
 
 
 
 



Ex.  For what values of x is the series convergent? 
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For a given power series cn x − a( )n
n= 0

∞

∑  there are only 3 possibilities. 

 
1. The series converges only when x = a. 
 
 
2. The series converges for all x. 
 
 
3. There is a positive number R such that the series converges if  
  |x – a| ≤ R and diverges if |x – a| > R. 
 
R is the radius of convergence. 
 
The interval of convergence of a power series is the interval that consists of 
all values of x for which the series converges absolutely.  Check endpoints 
(endpoints may converge absolutely or conditionally)! 
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Find the radius of convergence and interval of convergence for 
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Find the radius of convergence and interval of convergence for 
−1( )n+1 x 2 n+1
2n + 1( )!n= 0

∞

∑ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Find the radius of convergence and interval of convergence for 
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Power series are continuous functions. 
 
A power series is continuous on its interval of convergence. 
 
If a power series centered at x = a has a radius of convergence  
R > 0, then the power series can be differentiated and integrated on  
(a – R, a + R), and the new series will converge on  
(a – R, a + R), and maybe at the endpoints. 
 
 
 
 


