Math 1432

Bekki George bekki@math.uh.edu 639 PGH

Office Hours:

Mondays 1-2pm, Fridays noon-1pm (also available by appointment)

Class webpage: http://www.math.uh.edu/~bekki/Math1432.html

Geometric Series Test.

Basic Divergence Test.

p-Series Test.

Integral Test.

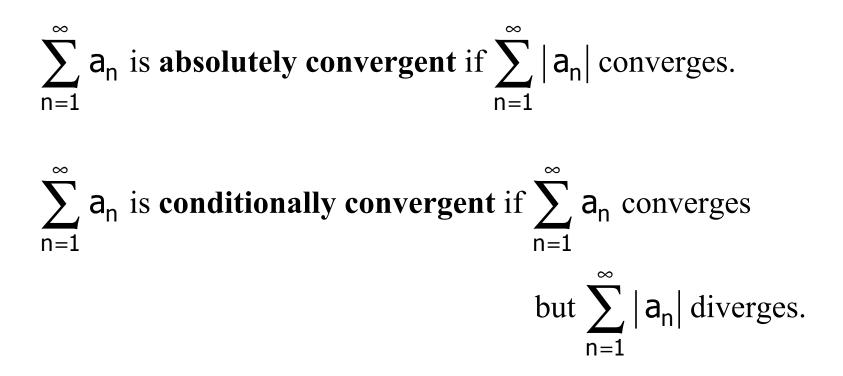
Basic Comparison Test.

Limit Comparison Test.

Root Test

Ratio Test

Alternating Series Test for Convergence: $\sum_{n=1}^{\infty} (-1)^{n-1} b_n \quad b_n > 0$



(Note: a non-alternating series can never converge conditionally)

Popper 26

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2n^2}$$

2.
$$\sum_{n=1}^{\infty} \frac{2n+1}{5n^2+2n}$$

3.
$$\sum_{n=1}^{\infty} \frac{3n+1}{5n^3+2n}$$

4.
$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$

5.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

6.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} arctan(n)}{n^2}$$

7.
$$\sum_{n=1}^{\infty} \frac{n \cos(n\pi)}{2^n}$$

8.
$$\sum_{n=1}^{\infty} \frac{n \cos(n\pi)}{n^2 + 1}$$

9. $\sum_{n=1}^{\infty} \frac{\ln n}{n}$

10.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n}$$

Notes for series "growth":

Let p(k) be a polynomial in k.

 r^k for r > 1 grows much faster than p(k)

k! grows much faster than r^k , p(k)

k^k grows much faster than the others

Hence,

$$\sum \frac{p(k)}{r^{k}}, \quad \sum \frac{p(k)}{k!}, \quad \sum \frac{p(k)}{k^{k}}$$

$$\sum \frac{r^{k}}{k!}, \quad \sum \frac{r^{k}}{k^{k}}, \quad \sum \frac{k!}{k^{k}}$$

ALL converge rapidly.

Power Series:

Suppose that
$$f(x) = \frac{6}{1-x}$$
.

If you divide 1 - x into 6, you get a "polynomial" that continues forever.

$$P(x) = 6 + 6x + 6x^{2} + 6x^{3} + 6x^{4} + \dots$$

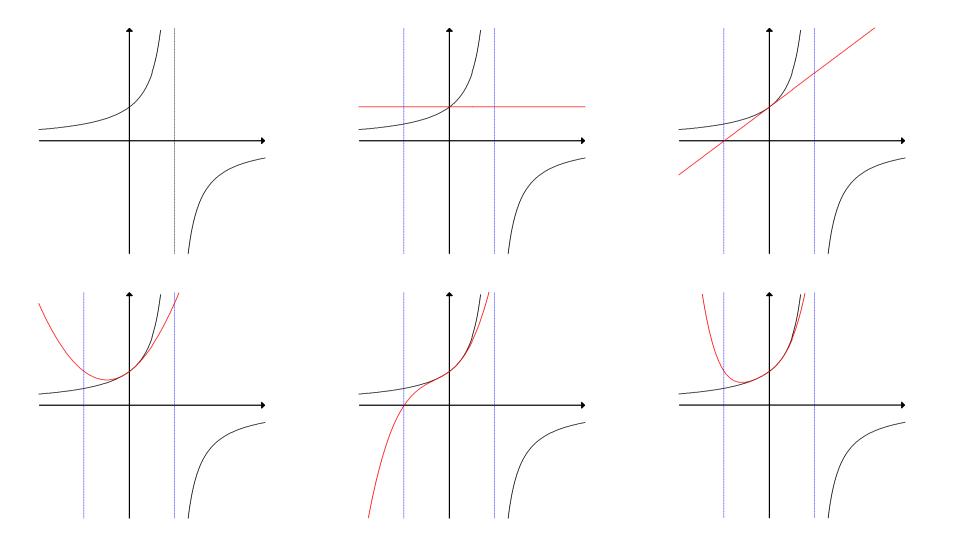
This result is a power series.

The word series indicates that there is an infinite number of terms.

The word power tells us that each term contains a power of x.

The series is also a geometric series, with |r|=x, so the series will converge for |x|<1.

By comparing the graphs of $f(x) = \frac{6}{1-x}$ and P(x) with more and more terms, you will see that between -1 and 1 (the interval of convergence), the two graphs converge.



A Power Series (centered at x=0) is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + \dots$$

where x is a variable and the c_n 's are coefficients.

Note:
$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \text{ when } |\mathbf{x}| < 1$$

Using this, we can write functions in this form in sigma notation:

Ex: Write
$$\frac{x^2}{4-x^2}$$
 as its power series

For a **fixed** x, the series is a series of constants and we can check for convergence/divergence. The series may converge for some values of x and diverge for others.

The sum of the series is

 $f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + \dots + c_n x^n + \dots$ whose domain is the set of all x for which the series converges.

 $f(\mathbf{x})$ resembles a polynomial, but it has infinitely many terms.

Let
$$c_n = 1$$
 for all n, we get the geometric series, centered at $x = 0$,

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + x^4 + \dots + x^n + \dots$$

which converges if |x| < 1 and diverges if $|x| \ge 1$.

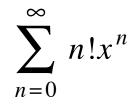
A Power Series (centered at x=a) is a series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \dots$$

For notation purposes, $(x - a)^0 = 1$ even when x = a.

When x = a, all the terms are 0 for $n \ge 1$, so the power series always converges when x = a.

Ex. For what values of *x* is the series convergent?



For a given power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ there are only 3 possibilities.

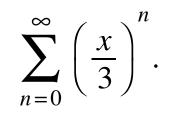
- 1. The series converges only when x = a.
- 2. The series converges for all x.
- 3. There is a positive number R such that the series converges if $|x a| \le R$ and diverges if |x a| > R.

R is the radius of convergence.

The interval of convergence of a power series is the interval that consists of all values of x for which the series converges absolutely. Check endpoints (endpoints may converge absolutely or conditionally)!

•

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (x-5)^n}{n 2^n}$$



$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^{n+1} x^{2n+1}}{\left(2n+1\right)!}$$

$$\sum_{n=0}^{\infty} n! (x-3)^n.$$

Power series are continuous functions.

A power series is continuous on its interval of convergence.

If a power series centered at x = a has a radius of convergence R > 0, then the power series can be differentiated and integrated on (a - R, a + R), and the new series will converge on (a - R, a + R), and maybe at the endpoints.