Math 1432

Bekki George
bekki@math.uh.edu
639 PGH

Office Hours:

Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html

Geometric Series Test.

Basic Divergence Test.
p-Series Test.

Integral Test.

Basic Comparison Test.

Limit Comparison Test.

Root Test

Ratio Test

Alternating Series Test for Convergence: $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n} \quad b_{n}>0$
$\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.
$\sum_{n=1}^{\infty} a_{n}$ is conditionally convergent if $\sum_{n=1}^{\infty} a_{n}$ converges

$$
\text { but } \sum_{n=1}^{\infty}\left|a_{n}\right| \text { diverges. }
$$

(Note: a non-alternating series can never converge conditionally)

Popper 26

1. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n^{2}}$
2. $\sum_{n=1}^{\infty} \frac{2 n+1}{5 n^{2}+2 n}$
3. $\sum_{n=1}^{\infty} \frac{3 n+1}{5 n^{3}+2 n}$
4. $\sum_{n=1}^{\infty} \frac{n}{3^{n}}$
5. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$
6. $\sum_{n=1}^{\infty} \frac{(-1)^{\mathrm{n}+1} \arctan (\mathrm{n})}{\mathrm{n}^{2}}$
7. $\sum_{n=1}^{\infty} \frac{\mathrm{n} \cos (\mathrm{n} \pi)}{2^{\mathrm{n}}}$
8. $\sum_{n=1}^{\infty} \frac{n \cos (n \pi)}{n^{2}+1}$
9. $\sum_{\mathrm{n}=1}^{\infty} \frac{\ln \mathrm{n}}{\mathrm{n}}$
10. $\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln n}{n}$

Notes for series "growth":

Let $\mathrm{p}(\mathrm{k})$ be a polynomial in k .
r^{k} for $r>1$ grows much faster than $p(k)$
k ! grows much faster than $\mathrm{r}^{\mathrm{k}}, \mathrm{p}(\mathrm{k})$
k^{k} grows much faster than the others

Hence,
$\sum \frac{\mathrm{p}(\mathrm{k})}{\mathrm{r}^{\mathrm{k}}}, \quad \sum \frac{\mathrm{p}(\mathrm{k})}{\mathrm{k}!}, \quad \sum \frac{\mathrm{p}(\mathrm{k})}{\mathrm{k}^{\mathrm{k}}}$
$\sum \frac{r^{k}}{k!}, \quad \sum \frac{r^{k}}{k^{k}}, \quad \sum \frac{k!}{k^{k}}$
ALL converge rapidly.

Power Series:

Suppose that $f(x)=\frac{6}{1-x}$.
If you divide $1-\mathrm{x}$ into 6 , you get a "polynomial" that continues forever.

$$
P(x)=6+6 x+6 x^{2}+6 x^{3}+6 x^{4}+\ldots
$$

This result is a power series.
The word series indicates that there is an infinite number of terms.
The word power tells us that each term contains a power of x .
The series is also a geometric series, with $|\mathrm{r}|=\mathrm{x}$, so the series will converge for $|\mathrm{x}|<1$.

By comparing the graphs of $f(x)=\frac{6}{1-x}$ and $\mathrm{P}(\mathrm{x})$ with more and more terms, you will see that between -1 and 1 (the interval of convergence), the two graphs converge.

A Power Series (centered at $\mathrm{x}=0$) is a series of the form
$\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+\ldots$
where x is a variable and the c_{n} 's are coefficients.
Note: $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$ when $|\mathrm{x}|<1$
Using this, we can write functions in this form in sigma notation:
Ex: Write $\frac{x^{2}}{4-x^{2}}$ as its power series

For a fixed x, the series is a series of constants and we can check for convergence/divergence. The series may converge for some values of x and diverge for others.

The sum of the series is
$f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+\ldots+c_{n} x^{n}+\ldots$ whose domain is the set of all x for which the series converges.
$f(\mathrm{x})$ resembles a polynomial, but it has infinitely many terms.
Let $\mathrm{c}_{\mathrm{n}}=1$ for all n , we get the geometric series, centered at $x=0$,

$$
\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+x^{4}+\ldots+x^{n}+\ldots
$$

which converges if $|x|<1$ and diverges if $|x| \geq 1$.

A Power Series (centered at $x=a$) is a series of the form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\ldots
$$

For notation purposes, $(x-a)^{0}=1$ even when $x=a$.
When $x=a$, all the terms are 0 for $n \geq 1$, so the power series always converges when $x=a$.

Ex. For what values of x is the series convergent?

$$
\sum_{n=0}^{\infty} n!x^{n}
$$

For a given power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ there are only 3 possibilities.

1. The series converges only when $x=a$.
2. The series converges for all x.
3. There is a positive number R such that the series converges if $|x-a| \leq \mathrm{R}$ and diverges if $|x-a|>\mathrm{R}$.
R is the radius of convergence.
The interval of convergence of a power series is the interval that consists of all values of x for which the series converges absolutely. Check endpoints (endpoints may converge absolutely or conditionally)!

Find the interval of convergence for $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n}$.

Find the radius of convergence and interval of convergence for

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-5)^{n}}{n 2^{n}}
$$

Find the radius of convergence and interval of convergence for

$$
\sum_{n=0}^{\infty}\left(\frac{x}{3}\right)^{n}
$$

Find the radius of convergence and interval of convergence for
$\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2 n+1}}{(2 n+1)!}$.

Find the radius of convergence and interval of convergence for
$\sum_{n=0}^{\infty} n!(x-3)^{n}$

Power series are continuous functions.

A power series is continuous on its interval of convergence.
If a power series centered at $x=a$ has a radius of convergence $R>0$, then the power series can be differentiated and integrated on $(a-R, a+R)$, and the new series will converge on ($a-R, a+R$), and maybe at the endpoints.

