Math 1432

Bekki George bekki@math.uh.edu 639 PGH

Office Hours:

Mondays 1-2pm, Fridays noon-1pm (also available by appointment)

Class webpage: http://www.math.uh.edu/~bekki/Math1432.html

Find the radius of convergence and interval of convergence for

$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^{n+1} x^{2n+1}}{\left(2n+1\right)!}$$

•

Find the radius of convergence and interval of convergence for

$$\sum_{n=0}^{\infty} n! (x-3)^n.$$

Derivatives and Integrals for Power Series

Now, what happens when we take the derivative of this?

Thm – If $\sum_{n=0}^{\infty} a_n x^n$ converges on (-c, c) then $\sum_{n=0}^{\infty} \frac{d}{dx} (a_n x^n)$ converges on (-c, c) (you still must check the endpoints for each problem)

Example:

Find the derivative of $\sum_{n=0}^{\infty} \frac{3nx^n}{n^2 + 1}$

Integration of Series:

Thm – If
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 converges on (-c, c), then $g(x) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ converges on (-c, c) and $\int f(x) dx = g(x) + C$

Find a power series for $\tan^{-1} x$ using integration.

Integrate
$$\int \sum_{n=0}^{\infty} \frac{3nx^n}{n^2 + 1} dx$$

(9.8) Definition of nth degree Taylor polynomial centered at c:

If f has n derivatives at c, then the polynomial

$$P_n(x) = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x-c)^n$$

is called the nth degree Taylor polynomial for f at c.

Give the 8th degree Taylor polynomial approximation to $y = e^x$ centered at x = 0.

k	$f^k(x)$	$f^{k}(1)$	$\frac{f^k(1)}{k!}$	term

Find an nth degree Taylor polynomial approximation for f(x) = cos(x) centered at x = 0.

k	$f^k(x)$	$f^k(0)$	$\frac{f^k(0)}{k!}$	term

Find an nth degree Taylor polynomial approximation for f(x) = sin(x) centered at x = 0.

k	$f^k(x)$	$f^k(0)$	$\frac{f^k(0)}{k!}$	term

Use the fourth-degree Taylor approximation $\cos x \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$ for x near

0 to find
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$
.

Popper 27

- 1. Give the 7th degree Taylor polynomial approximation for $f(x) = e^x$ centered at x = 0.
- 2. Give the 7th degree Taylor polynomial approximation for $f(x) = \sin(x)$ centered at x = 0.
- 3. Give the 7th degree Taylor polynomial approximation for $f(x) = \cos(x)$ centered at x = 0.
- 4. Give the coefficient of x^{10} for the 11^{th} degree Taylor polynomial approximation to sin (x) centered at x = 0.

5. Give the coefficient of $(x + 1)^2$ for the 4th degree Taylor polynomial approximation to x^4 centered at x = -1.

k	$f^k(x)$	$f^{k}(-1)$	$\frac{f^k(-1)}{k!}$	term

6. Give the 3rd degree Taylor polynomial for $f(x) = x^3 - 1$ centered at x = 1.