Math 1432

Bekki George
bekki@math.uh.edu
639 PGH

Office Hours:
Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html

Find the radius of convergence and interval of convergence for
$\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2 n+1}}{(2 n+1)!}$.

Find the radius of convergence and interval of convergence for $\sum_{n=0}^{\infty} n!(x-3)^{n}$

Derivatives and Integrals for Power Series

Expand $\sum_{n=0}^{\infty} a_{n} x^{n}$

Now, what happens when we take the derivative of this?

Thm - If $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges on ($-\mathrm{c}, \mathrm{c}$) then $\sum_{n=0}^{\infty} \frac{d}{d x}\left(a_{n} x^{n}\right)$ converges on ($-\mathrm{c}, \mathrm{c}$) (you still must check the endpoints for each problem)

Example:
Find the derivative of $\sum_{n=0}^{\infty} \frac{3 n x^{n}}{n^{2}+1}$

Integration of Series:
Thm - If $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ converges on (-c, c), then $g(x)=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}$ converges on $(-\mathrm{c}, \mathrm{c})$ and $\int f(x) d x=g(x)+C$

Find a power series for $\tan ^{-1} x$ using integration.

Integrate $\int \sum_{n=0}^{\infty} \frac{3 n x^{n}}{n^{2}+1} d x$

(9.8) Definition of nth degree Taylor polynomial centered at c :

If f has n derivatives at c , then the polynomial

$$
P_{n}(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\ldots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

is called the nth degree Taylor polynomial for f at c .

Give the $8^{\text {th }}$ degree Taylor polynomial approximation to $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$ centered at $x=0$.

k	$f^{k}(x)$	$f^{k}(1)$	$\frac{f^{k}(1)}{k!}$	term

Find an $\mathrm{n}^{\text {th }}$ degree Taylor polynomial approximation for $f(x)=\cos (x)$ centered at $\mathrm{x}=0$.

k	$f^{k}(x)$	$f^{k}(0)$	$\frac{f^{k}(0)}{k!}$	term

Find an $\mathrm{n}^{\text {th }}$ degree Taylor polynomial approximation for $f(x)=\sin (x)$ centered at $\mathrm{x}=0$.

k	$f^{k}(x)$	$f^{k}(0)$	$\frac{f^{k}(0)}{k!}$	term

Use the fourth-degree Taylor approximation $\cos x \approx 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}$ for x near
0 to find $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$.

Popper 27

1. Give the $7^{\text {th }}$ degree Taylor polynomial approximation for $f(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$ centered at $\mathrm{x}=0$.
2. Give the $7^{\text {th }}$ degree Taylor polynomial approximation for $f(x)=\sin (x)$ centered at $x=0$.
3. Give the $7^{\text {th }}$ degree Taylor polynomial approximation for $f(x)=\cos (x)$ centered at $x=0$.
4. Give the coefficient of x^{10} for the $11^{\text {th }}$ degree Taylor polynomial approximation to $\sin (x)$ centered at $x=0$.
5. Give the coefficient of $(x+1)^{2}$ for the $4^{\text {th }}$ degree Taylor polynomial approximation to x^{4} centered at $x=-1$.

k	$f^{k}(x)$	$f^{k}(-1)$	$\frac{f^{k}(-1)}{k!}$	term

6. Give the $3^{\text {rd }}$ degree Taylor polynomial for $f(\mathrm{x})=x^{3}-1$ centered at $x=1$.
