Math 1432

Bekki George bekki@math.uh.edu 639 PGH

Office Hours:

Mondays 1-2pm, Fridays noon-1pm (also available by appointment)

Class webpage: http://www.math.uh.edu/~bekki/Math1432.html

Find the radius and interval of convergence for
$$\sum_{n=1}^{\infty} \frac{(-1)^n (x-3)^n}{n \cdot 2^n}$$

Popper

2. Find the radius of convergence for the power series $\sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n$

3. Find the interval of convergence for the power series: $\sum_{n=0}^{\infty} \frac{1}{3^n} (x-1)^n$

4. Find
$$\frac{d}{dx} \sum \frac{(-1)^k 2^k}{k^2 + 1} x^k$$

Find $\int \sum \frac{(-1)^k 3^k x^k}{k^2} dx$

5. Find
$$\int \sum \frac{(-1)^k 2^k}{k^2 + 1} x^k dx$$

Taylor Polynomials in x Taylor Series in x

There are many functions that we only know at one point, or a handful of isolated points. Such as the trigonometric functions, e^x , ln x, etc.

Let's create a polynomial P(x) that has the same properties as some function f(x) that we know very well at x = a, such as *sin* (x) or e^x around x = 0.

The properties that we need to consider are the function and derivative properties.

Why a polynomial?

1) Find a polynomial of degree n = 4 for $f(x) = e^{2x}$ about x = 0.

k	$f^k(x)$	$f^k(0)$	$\frac{f^k(0)}{k!}$	term

2) Find a polynomial of degree n = 5 for $f(x) = \sin x$ about x = 0.

k	$f^k(x)$	$f^{k}(0)$	$\frac{f^k(0)}{k!}$	term

3) Find a polynomial of degree n = 4 for $f(x) = \ln |x+1|$ about x = 0.

k	$f^k(x)$	$f^{k}(0)$	$\frac{f^k(0)}{k!}$	term

4) Use the Taylor approximation $e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$ for x near 0 to find:

$$\lim_{x\to 0}\frac{e^x-1}{2x}.$$

5) Use the Taylor approximation $\sin x \approx x - \frac{x^3}{3!}$ for x near 0 to find

Definition of nth degree Taylor polynomial:

If f has n derivatives at c, then the polynomial

$$P_n(x) = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x-c)^n$$

is called the nth degree Taylor polynomial for f at c.

If c = 0, then

$$P_n(x) = f(0) + f'(0)(x) + \frac{f''(0)}{2!}(x)^2 + \dots + \frac{f^{(n)}(0)}{n!}(x)^n$$

<u>may</u> be called the nth degree Maclaurin polynomial for f.

6) Give the 8th degree Taylor polynomial approximation to $\ln (x)$ centered at x = 1.

k	$f^k(x)$	$f^k(1)$	$\frac{f^k(1)}{k!}$	term