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Popper  

2.    Find the radius of convergence for the power series 
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3.   Find the interval of convergence for the power series: 
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Taylor Polynomials in x 
Taylor Series in x 

  
There are many functions that we only know at one point, or a handful of 
isolated points.  Such as the trigonometric functions, ex, ln x, etc. 
 
Let’s create a polynomial P(x) that has the same properties as some 
function f (x) that we know very well at x = a, such as sin (x)  or e x around 
x = 0. 
 
The properties that we need to consider are the function and derivative 
properties. 
 
Why a polynomial? 
 
 
 
 
 
 



1) Find a polynomial of degree n = 4 for f x( ) = e2x  about x = 0. 
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2) Find a polynomial of degree n = 5 for f x( ) = sin x  about x = 0.   
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3) Find a polynomial of degree n = 4 for f x( ) = ln | x +1| about x = 0.   
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4) Use the Taylor approximation ex ≈1+ x + x
2
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+ x

3

3!
 for x near 0 to find:  
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5) Use the Taylor approximation sin x ≈ x − x
3

3!
 for x near 0 to find 

lim
x→0

sin x
x
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Definition of nth degree Taylor polynomial: 
 
If f  has n derivatives at c, then the polynomial 
 

Pn x( ) = f c( ) + f ' c( ) x − c( ) + f '' c( )
2! x − c( )2 + ...+ f n( ) c( )

n! x − c( )n  
 

is called the nth degree Taylor polynomial for f at c. 
 
 
 
If c = 0, then 
 

Pn x( ) = f 0( ) + f ' 0( ) x( ) + f '' 0( )
2! x( )2 + ...+ f n( ) 0( )

n! x( )n 
 

may be called the nth degree Maclaurin polynomial for f. 
 
 



6) Give the  8th degree Taylor polynomial approximation to ln (x) centered  
at x = 1. 
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