Math 1432

Bekki George
bekki@math.uh.edu
639 PGH

Office Hours:

Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html

Popper 28

1. The series $\sum \frac{(-1)^{k} \sqrt{k+2}}{\sqrt{4 k^{3}+2 k+1}}$ is

Find the radius and interval of convergence for $\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-3)^{n}}{n \cdot 2^{n}}$

Popper

2. Find the radius of convergence for the power series $\sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n}$
3. Find the interval of convergence for the power series: $\sum_{n=0}^{\infty} \frac{1}{3^{n}}(x-1)^{n}$

Find $\frac{d}{d x} \sum \frac{(-1)^{k} x^{k}}{3 k^{2}+1}$
4. Find $\frac{d}{d x} \sum \frac{(-1)^{k} 2^{k}}{k^{2}+1} x^{k}$

Find $\int \sum \frac{(-1)^{k} 3^{k} x^{k}}{k^{2}} d x$
5. Find $\int \sum \frac{(-1)^{k} 2^{k}}{k^{2}+1} x^{k} d x$

Taylor Polynomials in x

Taylor Series in x
There are many functions that we only know at one point, or a handful of isolated points. Such as the trigonometric functions, $\mathrm{e}^{\mathrm{x}}, \ln \mathrm{x}$, etc.

Let's create a polynomial $\mathrm{P}(\mathrm{x})$ that has the same properties as some function $f(\mathrm{x})$ that we know very well at $\mathrm{x}=\mathrm{a}$, such as $\sin (\mathrm{x})$ or e^{x} around $\mathrm{x}=0$.

The properties that we need to consider are the function and derivative properties.

Why a polynomial?

1) Find a polynomial of degree $\mathrm{n}=4$ for $f(x)=e^{2 x}$ about $\mathrm{x}=0$.

k	$f^{k}(x)$	$f^{k}(0)$	$\frac{f^{k}(0)}{k!}$	term

2) Find a polynomial of degree $\mathrm{n}=5$ for $f(x)=\sin x$ about $\mathrm{x}=0$.

k	$f^{k}(x)$	$f^{k}(0)$	$\frac{f^{k}(0)}{k!}$	term

3) Find a polynomial of degree $\mathrm{n}=4$ for $f(x)=\ln |x+1|$ about $\mathrm{x}=0$.

k	$f^{k}(x)$	$f^{k}(0)$	$\frac{f^{k}(0)}{k!}$	term

4) Use the Taylor approximation $e^{x} \approx 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}$ for x near 0 to find: $\lim _{x \rightarrow 0} \frac{e^{x}-1}{2 x}$.
5) Use the Taylor approximation $\sin x \approx x-\frac{x^{3}}{3!}$ for x near 0 to find $\lim _{x \rightarrow 0} \frac{\sin x}{x}$.

Definition of nth degree Taylor polynomial:

If f has n derivatives at c , then the polynomial

$$
P_{n}(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\ldots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

is called the nth degree Taylor polynomial for f at c .

If $\mathbf{c}=\mathbf{0}$, then

$$
P_{n}(x)=f(0)+f^{\prime}(0)(x)+\frac{f^{\prime \prime}(0)}{2!}(x)^{2}+\ldots+\frac{f^{(n)}(0)}{n!}(x)^{n}
$$

may be called the nth degree Maclaurin polynomial for f.
6) Give the $8^{\text {th }}$ degree Taylor polynomial approximation to $\ln (x)$ centered at $x=1$.

k	$f^{k}(x)$	$f^{k}(1)$	$\frac{f^{k}(1)}{k!}$	term

