Math 1432

Bekki George bekki@math.uh.edu 639 PGH

Office Hours:

Mondays 1-2pm, Fridays noon-1pm (also available by appointment)

Class webpage: http://www.math.uh.edu/~bekki/Math1432.html

Popper 29

- 1. Give the 7th degree Taylor polynomial approximation for $f(x) = e^x$ centered at x = 0.
- 2. Give the 7th degree Taylor polynomial approximation for f(x) = sin(x) centered at x = 0.
- 3. Give the 7th degree Taylor polynomial approximation for f(x) = cos(x) centered at x = 0.
- 4. Give the 7th degree Taylor polynomial approximation for f(x) = ln (x+1) centered at x = 0.
- 5. Give the coefficient of $(x 1)^3$ for the 8th degree Taylor polynomial approximation to ln(x) centered at x = 1.

Find the Taylor polynomial of degree n = 5 for f(x) = ln x at c = 1. Then use $P_5(x)$ to approximate the value of ln(1.1).

k	$f^k(x)$	$f^k(0)$	$\frac{f^k(0)}{k!}$	term
	$f(\mathbf{x}) = \ln \mathbf{x}$			
	$f'(\mathbf{x}) = \mathbf{x}^{-1}$			
	$f''(\mathbf{x}) = -1\mathbf{x}^{-2}$			
	$f'''(\mathbf{x}) = 2\mathbf{x}^{-3}$			
	$\int f^{(4)}(\mathbf{x}) = -6\mathbf{x}^{-4}$			
	$f^{(5)}(\mathbf{x}) = 24\mathbf{x}^{-5}$			

Suppose that g is a function which has continuous derivatives, and that g(2)=3, g'(2)=-4, g''(2)=7, g'''(2)=-5.

Write the Taylor polynomial of degree 3 for g centered at x = 2.

Find $P_6(x)$ for $f(x) = x^2 \cos(5x)$

Find
$$f^{(15)}(0)$$
 for $f(x) = e^{x^3}$

Lagrange Form of the Remainder or Lagrange Error Bound or Taylor's Theorem Remainder

When a Taylor polynomial is used to approximate a function, we need a way to see how accurately the polynomial approximates the function.

$$f(\mathbf{x}) = \mathbf{P}_{n}(\mathbf{x}) + \mathbf{R}_{n}(\mathbf{x})$$
 so $\mathbf{R}_{n}(\mathbf{x}) = f(\mathbf{x}) - \mathbf{P}_{n}(\mathbf{x})$

Written in words:

Function = Polynomial + Remainder $f(\mathbf{x}) = f(\mathbf{C}) + f'(\mathbf{C})(\mathbf{x} - \mathbf{C}) + \frac{f''(\mathbf{C})}{2!}(\mathbf{x} - \mathbf{C})^2 + \dots + \frac{f^{(n)}(\mathbf{C})}{n!}(\mathbf{x} - \mathbf{C})^n + \dots$ so

Remainder = Function – Polynomial

Lagrange Formula for Remainder:

Suppose *f* has n+1 continuous derivatives on an open interval that contains 0. Let x be in that interval and let $P_n(x)$ be the nth Taylor Polynomial for *f*. Then

$$R_{n}(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$$

where c is some number between 0 and x.

If we rewrite Taylor's theorem using the Lagrange formula for the remainder, we have

$$f(\mathbf{x}) = f(\mathbf{0}) + f'(\mathbf{0}) \mathbf{x} + \frac{f''(\mathbf{0})}{2!} \mathbf{x}^2 + \dots + \frac{f^{(n)}(\mathbf{0})}{n!} \mathbf{x}^n + \frac{f^{(n+1)}(\mathbf{c})}{(n+1)!} \mathbf{x}^{n+1}$$

where c is some number between 0 and x.

If there is a number M so that $|f^{(n+1)}(C)| \le M$

for all c between 0 and x then
$$|f(\mathbf{x}) - \mathsf{P}_{\mathsf{n}}(\mathbf{x})| \le \frac{\mathsf{M}}{(\mathsf{n}+1)!} |\mathbf{x}|^{\mathsf{n}+1}$$

or

$$\left|\mathsf{R}_{\mathsf{n}}(\mathsf{x})\right| \leq \left(\max\left|f^{(\mathsf{n}+1)}(\mathsf{c})\right|\right) \frac{\left|\mathsf{x}\right|^{\mathsf{n}+1}}{(\mathsf{n}+1)!} \text{ for } \mathsf{c} \text{ between } 0 \text{ and } \mathsf{x}.$$

We probably will not know the value of c.

Give an error estimate for the approximation of *sin* (x) by $P_9(x)$ for an arbitrary value of x between 0 and $\pi/4$, centered at x = 0.

$$f(\mathbf{x}) = \sin \mathbf{x}$$
$$f'(\mathbf{x}) = \cos \mathbf{x}$$
$$f''(\mathbf{x}) = -\sin \mathbf{x}$$
$$f'''(\mathbf{x}) = -\cos \mathbf{x}$$
$$f^{(4)}(\mathbf{x}) = -\cos \mathbf{x}$$

Give an error estimate for the approximation of *cos* (x) by $P_{10}(x)$ for an arbitrary value of x between 0 and $\pi/4$, centered at x = 0.

$$f(\mathbf{X}) = \cos \mathbf{X}$$
$$f'(\mathbf{X}) = -\sin \mathbf{X}$$
$$f''(\mathbf{X}) = -\cos \mathbf{X}$$
$$f'''(\mathbf{X}) = \sin \mathbf{X}$$
$$f^{(4)}(\mathbf{X}) = \cos \mathbf{X}$$

Popper

6. Assume that f(x) is a function such that $|f^{(10)}(x)| < 15$ for all x in the interval (0,1). What is the max possible error for the ninth degree Taylor polynomial centered at 0 for this function when approximating f(1)?