Math 1432

Bekki George
bekki@math.uh.edu
639 PGH

Office Hours:

Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html

Popper 29

1. Give the $7^{\text {th }}$ degree Taylor polynomial approximation for $f(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$ centered at $\mathrm{x}=0$.
2. Give the $7^{\text {th }}$ degree Taylor polynomial approximation for $f(\mathrm{x})=\sin (\mathrm{x})$ centered at $\mathrm{x}=0$.
3. Give the $7^{\text {th }}$ degree Taylor polynomial approximation for $f(\mathrm{x})=\cos (\mathrm{x})$ centered at $\mathrm{x}=0$.
4. Give the $7^{\text {th }}$ degree Taylor polynomial approximation for $f(\mathrm{x})=\ln (\mathrm{x}+1)$ centered at $\mathrm{x}=0$.
5. Give the coefficient of $(x-1)^{3}$ for the $8^{\text {th }}$ degree Taylor polynomial approximation to $\ln (\mathrm{x})$ centered at $\mathrm{x}=1$.

Find the Taylor polynomial of degree $\mathrm{n}=5$ for $f(\mathrm{x})=\ln \mathrm{x}$ at $\mathrm{c}=1$.
Then use $P_{5}(x)$ to approximate the value of $\ln (1.1)$.

k	$f^{k}(x)$	$f^{k}(0)$	$\frac{f^{k}(0)}{k!}$	term
	$f(\mathrm{x})=\ln \mathrm{x}$			
	$f^{\prime}(\mathrm{x})=\mathrm{x}^{-1}$			
	$f^{\prime \prime}(\mathrm{x})=-1 \mathrm{x}^{-2}$			
	$f^{\prime \prime \prime}(\mathrm{x})=2 \mathrm{x}^{-3}$			
	$f^{(4)}(\mathrm{x})=-6 \mathrm{x}^{-4}$			
	$f^{(5)}(\mathrm{x})=24 \mathrm{x}^{-5}$			

Suppose that g is a function which has continuous derivatives, and that

$$
g(2)=3, \quad g^{\prime}(2)=-4, \quad g^{\prime \prime}(2)=7, \quad g^{\prime \prime \prime}(2)=-5
$$

Write the Taylor polynomial of degree 3 for g centered at $\mathrm{x}=2$.

Find $P_{6}(x)$ for $f(x)=x^{2} \cos (5 x)$

Find $f^{(15)}(0)$ for $f(x)=e^{x^{3}}$

Lagrange Form of the Remainder or
 Lagrange Error Bound or Taylor's Theorem Remainder

When a Taylor polynomial is used to approximate a function, we need a way to see how accurately the polynomial approximates the function.
$f(\mathrm{x})=\mathrm{P}_{\mathrm{n}}(\mathrm{x})+\mathrm{R}_{\mathrm{n}}(\mathrm{x}) \quad$ so $\quad \mathrm{R}_{\mathrm{n}}(\mathrm{x})=f(\mathrm{x})-\mathrm{P}_{\mathrm{n}}(\mathrm{x})$
Written in words:

Function $=$ Polynomial + Remainder
$f(\mathrm{x})=f(\mathrm{c})+f^{\prime}(\mathrm{c})(\mathrm{x}-\mathrm{c})+\frac{f^{\prime \prime}(\mathrm{c})}{2!}(\mathrm{x}-\mathrm{c})^{2}+\ldots+\frac{f^{(\mathrm{n})}(\mathrm{c})}{\mathrm{n}!}(\mathrm{x}-\mathrm{c})^{\mathrm{n}}+\ldots$ so

Remainder $=$ Function - Polynomial

Lagrange Formula for Remainder:
Suppose f has $\mathrm{n}+1$ continuous derivatives on an open interval that contains 0 . Let x be in that interval and let $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ be the $\mathrm{n}^{\text {th }}$ Taylor Polynomial for f. Then

$$
\mathrm{R}_{\mathrm{n}}(\mathrm{x})=\frac{f^{(\mathrm{n}+1)}(\mathrm{c})}{(\mathrm{n}+1)!} \mathrm{x}^{\mathrm{n}+1}
$$

where c is some number between 0 and x .
If we rewrite Taylor's theorem using the Lagrange formula for the remainder, we have
$f(\mathrm{x})=f(0)+f^{\prime}(0) \mathrm{x}+\frac{f^{\prime \prime}(0)}{2!} \mathrm{x}^{2}+\ldots+\frac{f^{(\mathrm{n})}(0)}{\mathrm{n}!} \mathrm{x}^{\mathrm{n}}+\frac{f^{(\mathrm{n}+1)}(\mathrm{c})}{(\mathrm{n}+1)!} \mathrm{x}^{\mathrm{n}+1}$
where c is some number between 0 and x .

If there is a number M so that $\left|f^{(\mathrm{n}+1)}(\mathrm{C})\right| \leq \mathrm{M}$
for all c between 0 and x then $\left|f(\mathrm{x})-\mathrm{P}_{\mathrm{n}}(\mathrm{x})\right| \leq \frac{\mathrm{M}}{(\mathrm{n}+1)!}|\mathrm{x}|^{\mathrm{n}+1}$
or
$\left|\mathrm{R}_{\mathrm{n}}(\mathrm{x})\right| \leq\left(\max \left|f^{(\mathrm{n}+1)}(\mathrm{c})\right|\right) \frac{|\mathrm{x}|^{\mathrm{n}+1}}{(\mathrm{n}+1)!}$ for c between 0 and x.
We probably will not know the value of c .

Give an error estimate for the approximation of $\sin (\mathrm{x})$ by $\mathrm{P}_{9}(\mathrm{x})$ for an arbitrary value of x between 0 and $\pi / 4$, centered at $x=0$.

$$
\begin{aligned}
& f(\mathrm{x})=\sin \mathrm{x} \\
& f^{\prime}(\mathrm{x})=\cos \mathrm{x} \\
& f^{\prime \prime}(\mathrm{x})=-\sin \mathrm{x} \\
& f^{\prime \prime \prime}(\mathrm{x})=-\cos \mathrm{x} \\
& f^{(4)}(\mathrm{x})=\sin \mathrm{x}
\end{aligned}
$$

Give an error estimate for the approximation of $\cos (x)$ by $\mathrm{P}_{10}(\mathrm{x})$ for an arbitrary value of x between 0 and $\pi / 4$, centered at $x=0$.
$f(\mathrm{x})=\cos \mathrm{x}$
$f^{\prime}(\mathrm{x})=-\sin \mathrm{x}$
$f^{\prime \prime}(x)=-\cos x$
$f^{\prime \prime \prime}(\mathrm{x})=\sin \mathrm{X}$
$f^{(4)}(\mathrm{x})=\cos \mathrm{X}$

Poppper

6. Assume that $f(x)$ is a function such that $\left|f^{(10)}(x)\right|<15$ for all x in the interval $(0,1)$. What is the max possible error for the ninth degree Taylor polynomial centered at 0 for this function when approximating $f(1)$?
