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Popper  29    
 

1. Give the 7th degree Taylor polynomial approximation for 
 f (x) = ex centered at x = 0. 

 
2. Give the 7th degree Taylor polynomial approximation for  
  f (x) = sin (x) centered at x = 0. 
 
 
3. Give the 7th degree Taylor polynomial approximation for  
  f (x) = cos (x) centered at x = 0. 
 
4. Give the 7th degree Taylor polynomial approximation for  
  f (x) = ln (x+1) centered at x = 0. 
 
 
5. Give the coefficient of (x – 1)3 for the 8th degree Taylor  polynomial 
approximation to ln (x) centered at x = 1. 

 



Find the Taylor polynomial of degree n = 5 for ( ) =x xf ln  at c = 1.  
Then use ( )5P x  to approximate the value of ( )1 1ln . . 
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   f x( ) = lnx     

   f ' x( ) = x−1    
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Suppose that g is a function which has continuous derivatives, and that  

( ) ( ) ( ) ( )= = − = = −g 2 3 g 2 4 g 2 7 g 2 5, ' , '' , ''' .  
 
Write the Taylor polynomial of degree 3 for g centered at x = 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Find P6 (x)  for f (x) = x2 cos(5x)   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Find f
(15)(0)  for f (x) = e

x3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Lagrange Form of the Remainder 
or 

Lagrange Error Bound or Taylor’s Theorem Remainder 
 

When a Taylor polynomial is used to approximate a function, we need a 
way to see how accurately the polynomial approximates the function. 
 
( ) ( ) ( )= +n nx P x R xf      so       ( ) ( ) ( )= −n nR x x P xf  

 
Written in words: 
 
Function = Polynomial + Remainder  
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Remainder = Function – Polynomial 
 
 



Lagrange Formula for Remainder: 
 
Suppose f  has n+1 continuous derivatives on an open interval that contains 
0.   Let x be in that interval and let ( )nP x  be the nth Taylor Polynomial for f.  
Then  
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where c is some number between 0 and x.  
 
If we rewrite Taylor’s theorem using the Lagrange formula for the 
remainder, we have 
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where c is some number between 0 and x. 



If there is a number M so that     ( ) ( )+ ≤n 1 c Mf  
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We probably will not know the value of c. 
 
 
 
 
 
 
 



Give an error estimate for the approximation of sin (x) by P9(x) for an 
arbitrary value of x between 0 and π/4, centered at x = 0. 
 
( )
( )
( )
( )

( )( )4

x x

x x

x x

x x

x x

f sin

f ' cos

f '' sin

f ''' cos

f sin

=

=

= −

= −

=

 

 
 
 
 
 
 
 
 
 



Give an error estimate for the approximation of cos (x) by P10(x) for an 
arbitrary value of x between 0 and π/4, centered at x = 0. 
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Poppper 
 

6. Assume that f(x)  is a function such that f
(10)(x) <15 for all x in the 

interval (0,1). What is the max possible error for the ninth degree Taylor 
polynomial centered at 0 for this function when approximating f(1)? 
 
 
 
 
 
 
 
 


