Math 1432

Bekki George
bekki@math.uh.edu
639 PGH

Office Hours:

Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html

Recall $\left|\mathrm{R}_{\mathrm{n}}(\mathrm{x})\right| \leq\left(\max \left|f^{(\mathrm{n}+1)}(\mathrm{c})\right|\right) \frac{|\mathrm{x}|^{\mathrm{n}+1}}{(\mathrm{n}+1)!}$ for c between 0 and x .

Assume that f is a function such that $\left|f^{(n)}(x)\right| \leq 1$ for all n and x. Estimate the error if $P_{7}(-2)$ is used to approximate $f(-2)$

10.1 Polar Coordinates

How do you describe the position of a point in a plane using distance and angle rather than x - and y -coordinates?
$r=$ directed distance from O to P
$\theta=$ directed angle

Plot the points.
A. $\left[2, \frac{\pi}{3}\right]$
B. $\left[3,-\frac{\pi}{6}\right]$
C. $\left[3, \frac{11 \pi}{6}\right]$
D. $\left[-2, \frac{-\pi}{3}\right]$
E. $\left[2, \frac{5 \pi}{3}\right]$
F. $\left[-2, \frac{\pi}{4}\right]$

Plot the points and find three additional polar representations of each point using $\quad-2 \pi<\theta<2 \pi$
$\mathrm{A}\left[3, \frac{-3 \pi}{4}\right]$

B $\left[4, \frac{3 \pi}{4}\right]$

Note : $[\mathrm{r}, \theta]=[\mathrm{r}, \theta \pm 2 \mathrm{n} \pi]=[-\mathrm{r}, \theta \pm(2 \mathrm{n}+1) \pi]$ and $[\mathrm{r}, \theta+\pi]=[-\mathrm{r}, \theta]$

Changing from polar form to rectangular form:
Formulas: $x=r \cos \theta \quad y=r \sin \theta$
Example : Change the following to rectangular form
A. $\left[2, \frac{\pi}{3}\right]$
B. $[\sqrt{3}, \pi]$

Changing from rectangular to polar form:

Formulas: $x^{2}+y^{2}=r^{2}$ For θ, can use formulas above or $\theta=\arctan \frac{y}{x}, x \neq 0$ Example: Change the following to polar form:
A. $(1,-\sqrt{3})$
B. $(2,-2)$

More examples:

1. Write the following in polar form.
A. $x^{2}-y^{2}=4$
B. $y=4$
C. $\mathrm{y}=\mathrm{x}$
2. Write in rectangular form and describe the graph.
A. $r \sin \theta=4$
B. $\theta=\frac{1}{3} \pi$
C. $r=3 \cos \theta$
D. $r=\csc \theta$
E. $r=\frac{1}{1-\cos \theta}$

Popper 30

1. The graph of $y^{2}+x^{2}=4$ is $a(n)$
2. The graph of $r=2$ is $a(n)$
3. The polar graph of $r=2 \sec (\theta)$ is a
4. The polar graph of $r=\sec (\theta) \tan (\theta)$ is
