Math 1432

Bekki George
bekki@math.uh.edu
639 PGH

Office Hours:

Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html

Popper 32

1. Which of the following is the cardioid?
2. Which of the following is the flower?
3. Which of the following is the limaçon with a dent (dimple)?
4. Which of the following is the limaçon with an inner loop?
5. Which of the following is the circle?

Area in Polar Coordinates

The area of a polar region is based on the area of a sector of a circle.
Area of a circle $=\pi r^{2}$

Therefore the area of a sector of a circle is the part of the circle you want times the area of the whole circle:

$$
\text { Area sector }=\frac{\theta}{2 \pi} \bullet \pi r^{2}=\frac{1}{2} r^{2} \theta
$$

Find the area of the region between the origin and the polar graph of $r=\rho(\theta)$ for θ between a and b.

1. Find the area bounded by the graph of $r=2+2 \sin \theta$.

2. Find the area inside one petal of the flower given by $\mathrm{r}=2 \sin (3 \theta)$.

3. Find the area inside one petal of the flower given by $\mathrm{r}=4 \cos (2 \theta)$.

4. Find the area inside THE INNER LOOP of $r=1+2 \sin \theta$

5. Write the integral to find the area between $\mathrm{r}=1+\cos \theta$, $\mathrm{r}=\cos \theta$, for $\theta=0$ to $\theta=\pi / 2$

6. Find the area inside $\mathrm{r}=3 \sin \theta$ and outside $\mathrm{r}=1+\sin \theta$.

7. Find the area between the loops of $\mathrm{r}=1+2 \cos \theta$.

area from o to $\pi / 2$

area from 0 to π

area from 0 to $\frac{2 \pi}{3}$

area traced from to $\frac{5 \pi}{3}$

IIII traced for the seconal t tIme
area traced from
0 to $3 \pi / 2$

III traced twice
area traced from 0 to 2π

$111+$ MI I
traced twice

Give the area of the region that is in quadrant 4 and inside the outer loop of the polar graph $\mathrm{r}=1-2 \cos (\theta)$

7. Give the integral that will determine the area inside one petal of the flower given by $\mathrm{r}=\sin (3 \theta)$.

How can we find the length of a polar curve?
$\mathrm{L}(\mathrm{c})=\int_{\alpha}^{\beta} \sqrt{[\rho(\theta)]^{2}+\left[\rho^{\prime}(\theta)\right]^{2}} \mathrm{~d} \theta$
Verify the formula for the circumference of a circle with radius a using the formula above.

Set up the integral to find the length of one petal of the curve $r=\cos 3 \theta$

Determine the length of the perimeter of the region in Quadrant I bounded by the circles $r=2 \sin \theta$ and $r=2 \cos \theta$

