Math 1432

Bekki George
bekki@math.uh.edu
639 PGH

Office Hours:

Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html

POPPER 33

1. The polar plot of $\mathrm{r}=2+2 \cos \theta$ is a
2. The polar plot of $\mathrm{r}=5-2 \cos \theta$ is a
3. The polar plot of $\mathrm{r}=7-12 \cos \theta$ is a
4. The polar plot of $\mathrm{r}=2 \cos 5 \theta$ is a
5. The polar plot of $r=4 \cos \theta$ is a
6. Give the formula for the area of the region that is enclosed by the polar curve $r=1+2 \sin (\theta)$ and lies below the x-axis.
7. Re-write $(x-3)^{2}+y^{2}=9$ in polar form

Parametric Curves

Parametric equations are sets of equations that are used to express quantities explicitly in terms of another variable.

So, instead of using $y=f(x)$ (defining y in terms of x), we let $x(t)$ and $y(t)$ be functions where t is the parameter.

Then $(x(t), y(t))$ is the point that traces out the curve.

If t is restricted to lie on an interval $[a, b]$ then $x(t)$ and $y(t)$ would have an initial point $(x(a), y(a))$ and a terminal point $(x(b), y(b))$. So a parametric curve has an orientation given by the parameterizing variable.

Ex. 1: Plot $(\cos (\mathrm{t}), \sin (\mathrm{t}))$ for $0 \leq \mathrm{t} \leq 2 \pi$ and express the curve by an equation in x and y .

Ex. 2: Sketch the curve and eliminate the parameter.

$$
x(\theta)=3 \cos (\theta) \quad y(\theta)=4 \sin (\theta) \quad 0 \leq \theta \leq 2 \pi
$$

Ex. 3: Give a parameterization of the PORTION of the line $y=-2 x+5$ between $(1,3)$ and $(-2,9)$

To parameterize a line SEGMENT from $\left(x_{0}, y_{0}\right)$ to $\left(x_{1}, y_{1}\right)$:

$$
\begin{aligned}
& x(t)=x_{0}+t\left(x_{1}-x_{0}\right) \\
& y(t)=y_{0}+t\left(y_{1}-y_{0}\right) \\
& 0 \leq t \leq 1
\end{aligned}
$$

For a LINE: $-\infty<t<\infty$
Ex. 4: Parameterize the line segment from $(3,6)$ to $(-2,5)$.

Ex. 5: Express the curve by an equation in x and y ; then sketch the curve. $\quad x(t)=3 t-1 \quad y(t)=5-2 t \quad t \in(-\infty, \infty)$

Ex. 6: Express the curve by an equation in x and y $x(t)=3 \tan t \quad y(t)=5-\sec ^{2} t$

Ex. 7: Express the curve by an equation in x and y

$$
x(t)=4+e^{t} \quad y(t)=2 e^{2 t}
$$

8. The parametric curve given by $(2 \cos (\mathrm{t}), 2 \sin (\mathrm{t}))$ is a(n)
9. The parametric curve given by $(3 \cos (\mathrm{t}), 5 \sin (\mathrm{t}))$ is $\mathrm{a}(\mathrm{n})$
10. Eliminate the parameter and find a corresponding rectangular equation: $x=3 t^{2}$ and $y=2 t+1$
