Math 2311

Bekki George – bekki@math.uh.edu
Office Hours: MW 11am to 1pm in 639 PGH
Online Thursdays 4-5:30pm
And by appointment

Class webpage: http://www.math.uh.edu/~bekki/Math2311.html

Math 2311 Class Notes for Section 1.1 & 1.2

Section 1.1:

Types of data:

• Population Data - Everythung/Everyone We are studying

• Sample Data - subset of population

Example: Identify the population and the sample for each of the following:

1. University of Houston in interested in how many students buy used books as opposed to new ones. They randomly choose 100 students at the student center to interview.

population - all UH students Sample - 100 chosen students.

2. An elementary school is creating a new lunch menu. They send questionnaires to students with last names that begin with the letters M through R.

population - everyone at elemsample - students (M-R) that answer quest. A variable is a characteristic of an individual that can assume more than one value. Variables can be classified as categorical (qualitative) or quantitative (numeric).

• Categorical variables - describes quality

• Quantitative variables - numeric

Measurements

Quantitative variables can be classified as either **discrete** or **continuous**.

- Discrete quantitative variables Count w
- Continuous quantitative variables Can take on a range of values of values on interval

Example: Classify the following variables as categorical or quantitative. If quantitative, state whether the variable is discrete or continuous.

- 3. Political preference.
- 4. Number of siblings.
- 5. Blood type.
- 6. Height of men on a professional basketball team.
- 7. Time it takes to be on hold when calling the IRS at tax time.

Section 1.2:

One question we want to answer about data is about its location, particularly the location of its center.

· Mean- 'average" add up values + divide by n

Symbols for mean: $\bar{x} vs. \mu$ X = Sample mean X = pop. mean X = pop. mean X = pop. mean X = number in

• Median - " mid d le "

population put list in order (if two numbers in middle, average)

• Mode - Most

Examples:

1. Twelve babies spoke for the first time at the following ages (in months):

a. What is the mean of the data?

b. What is the median of the data?

2. Here are the weights (in pounds) of 20 steers on an experimental feed diet:

174 142 131 145 175 150 176 151 110 162

133 163 135 178 178 154 166 146 156 167

a. What is the mean of the data?

63,135,178,178,154,166,146,156,167)

> mean(steers)

[1] 154.6

> median(steers)

b. What is the median of the data?

[1] 155

> mode(steers)
[1] "numeric"

> sort(steers)

[1] 110 131 133 135 142 145 146 150 151 154 156 162

163

c. What is the mode of the data?

[14] 166 167 174 175 176 178 178

3. The test scores of a class of 20 students have a mean of 71.6 and the test scores of another class of 14 students have a mean of 78.4. Find the mean of the combined group.

$$\frac{20(71.6) + 14(78.4)}{34} = 74.4$$

$$\frac{34}{30.114}$$

4. Explain why the conclusion drawn is not valid:

A businesswoman calculates that the median cost of the five business trips that she took in a month is \$600 and concludes that the total cost must have been \$3000.

