Math 2311

Bekki George – bekki@math.uh.edu
Office Hours: MW 11am to 12:45pm in 639 PGH
Online Thursdays 4-5:30pm
And by appointment

Class webpage: http://www.math.uh.edu/~bekki/Math2311.html

a.
$$P(A) = 0.9, P(B) = 0.3, P(A \cap B) = 0.27$$

b.
$$P(A) = 0.4, P(B) = 0.6, P(A \cap B) = 0.20$$

$$(.4)(.4) = .24 \neq .20$$

independent + mutually excl.

P(ANB)= 0

AND =
$$\bigcap$$

OR = \bigvee

Class Notes for More Probability Review and Section 3.1 \bigcap

P(A|B) = \bigcap

P(A\B)

#21 from text:
$$F = felony C = college P(F) = .3$$

Thirty percent of the students at a local high school face a disciplinary action of some kind before they graduate. Of those "felony" students, 40% go on to college. Of the ones who do not face a disciplinary action, 60% go on to college. P(C|F) = .4

a. What is the probability that a randomly selected student both faced a disciplinary

action and went on to college?
$$P(F \cap C) + P(C|F) = \frac{P(C \cap F)}{P(F)} = \frac{P(C \cap F)}{3}$$

b. What percent of the students from the high school go on to college?

$$P(C) = P(C \cap F) + P(C \cap F^{C})$$

= .12 + .42 = .54

c. Show if events {faced disciplinary action} and {went to college} are independent or not.

$$P(c) \cdot P(F) = (.54)(.3) = .162 \neq .12$$

not independent.

$$P(C|F^c) = \frac{P(C \cap F^c)}{P(F^c)}$$

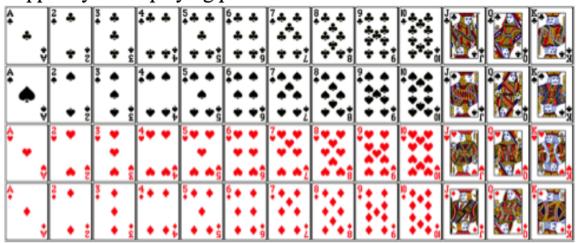
$$.6 = \frac{\times}{.7}$$

$$P(F) = .3$$

$$P(F^c) = .7$$

Popper 02

$$P(A) = 0.73$$
, $P(B) = 0.44$, $P(A \cup B) = 0.89$


1.
$$P(A \cap B) =$$

$$P(AUB) = P(A) + P(B) - P(A \cap B)$$

2.
$$P(A \mid B) =$$
a. 0.3212
b. 0.2800

P. $(A \cap B)$
P (B)

Suppose you are playing poker with a standard deck of 52 cards:

How many 5 card hands are possible?

How many ways can you get 4 kings in a hand?

How many ways can you have any 4 of a kind hand?

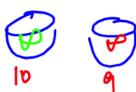
$$13(4C4) \cdot 48 = 624$$

What is the probability of getting 4 of a kind?

000 D

$$403^{\circ} 402 = 4.6 = 24$$

How many ways can you have 3 kings and 2 fives? KKK 55


$$4C_3 \quad 4C_2 = 4 \cdot b = 24$$
How many ways can you get a full house? 3η a kind 42η a kind $13(4C_3) \cdot 12(4C_2) = 3744$

What is the probability of getting a full house?

Problems from Quiz 2:

A researcher randomly selects 2 fish from among 10 fish in a tank and puts each of the 2 selected fish into different containers. How many ways can this be done?

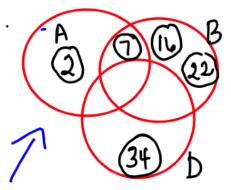
ORPER MATTERS! nPr

$$10 P_2 = \frac{10!}{(10-2)!} = 90$$

An experimenter is randomly sampling 4 objects in order from among 61 objects. What is the total

number of samples in the sample space?

Since this says "in order", this is a Permutation. the answer is 61P4 = 12524520


This is if it didn't say "in order"

Pe(m.

choose (61,4)

How many license plates can be made using 3 digits and 4 letters if repeated digits and letters are

Demogran's Law $(E \cap F)^c = E^c \cup F^c$ $(E \cup F)^c = E^c \cap F^c$ Let $A = \{2, 7\}, B = \{7, 16, 22\}, D = \{34\}$ and $S = \text{sample space} = A \cup B \cup D$. Find $(A^c \cap B^c)^c$.

$$A^{c} = \{14, 22, 34\}$$
 $(A^{9}^{c} U(B^{c})^{c})^{c}$
 $B^{c} = \{2, 34\}$
 $A^{o} \cap B^{c} = 34$
 $(A^{c} \cap B^{c})^{c} = \{2, 7, 14, 22\}$

Popper 02

- 3. Let $A = \{2, 7\}$, $B = \{7, 16, 22\}$, $D = \{34\}$ and $S = \text{sample space} = A \cup B \cup D$. Identify $B^c \cup A$.
- a) {2, 7, 16, 22}
- b) {2, 16, 22, 34}
- (c) (2, 7, 34)
- d) {2, 34}
- e) $\{2, 7\}$

58 do have cracks

In a shipment of 71 vials, only 13 do not have hairline cracks. If you randomly select one vial from the shipment, what is the probability that it has a hairline crack?

$$P(crack) = \frac{58}{71}$$

Popper 02

62-14 = 48 have no crack

4. In a shipment of 62 vials, only 14 do not have hairline cracks. If you randomly select one vial from the shipment, what is the probability that it has a hairline crack?

- a) $\frac{1}{14}$
- (b)³⁴/₃₁
- c) $\frac{7}{24}$
- d) $\frac{7}{31}$
- e) $\frac{1}{62}$

(48C1)/(62C1)

38 do have cracks

In a shipment of 54 vials, only 16 do not have hairline cracks. If you randomly select 3 vials from the shipment, what is the probability that none of the 3 vials have hairline cracks?

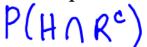
$$\frac{16^{\circ} \frac{3}{3}}{54^{\circ} \frac{3}{3}} = \frac{560}{24804}$$
We actly 2 have cracks;
$$\frac{38^{\circ} \frac{16^{\circ} \frac{1}{16}}}{54^{\circ} \frac{3}{3}} = \frac{703 \cdot 16}{24804} \approx .453$$
The probability that a randomly selected person has high blood pressure (the event H) is $P(H) = 0.4$

The probability that a randomly selected person has high blood pressure (the event H) is P(H) = 0.4 and the probability that a randomly selected person is a runner (the event R) is P(R) = 0.3. The probability that a randomly selected person has high blood pressure and is a runner is 0.2. Find the probability that a randomly selected person either has high blood pressure or is a runner or both.

$$P(H \cup R) = .2$$

$$P(H \cup R) = P(H) + P(R) - P(H \cap R)$$

$$= .4 + .3 - .2$$


$$= .5$$


$$P(H \cap R) = .2$$
 $P(H \cup R) = .5$

5. The probability that a randomly selected person has high blood pressure (the event H) is P(H) = 0.4 and the probability that a randomly selected person is a runner (the event R) is P(R) = 0.3. The probability that a randomly selected person has high blood pressure and is a runner is 0.2. Find the probability that a randomly selected person has high blood pressure and is not a

runner.

- a) 0.5
- b)0.2
- c) 0.7
- d) 0.6
- e) 0.4

Are events H and R independent? Mutually exclusive? NO $P(H) P(R) = (.4)(.3) = .12 \neq .2$

$$P(A \cap R) \neq 0$$

$$P(H \cap O) = .08$$
 $P(H) = .16$ $P(O) = .26$

Hospital records show that 16% of all patients are admitted for heart disease, 26% are admitted for cancer (oncology) treatment, and 8% receive both coronar and ncology care. What is the probability that a randomly selected patient is admitted for coronary care, oncology or both? (Note that heart disease is a coronary care issue.) P(UUO) = .16 + .26 - .08

What is the probability that a randomly selected patient is admitted for something other than P(Hc) = .84 -.16 coronary care?

Popper 02

8 function

6. Among 9 electrical components exactly one is known not to function properly. If 3 components are randomly selected, find the probability that all selected components function properly.

- (a))2/3
- b) 1/3
- c) 8/9
- d) 5/9
- e) 1

9 C 3

What is the probability that exactly one does not function properly?

What is the probability that at least one does not function properly?

Section 3.1

RN.

A **random variable** is a variable whose value is a numerical outcome of a random phenomenon. It assigns one and only one numerical value to each point in the sample space for a random experiment.

A discrete random variable is one that can assume a countable number of possible values A continuous random variable can assume any value in an interval on the number line.

A **probability distribution table of** *X* consists of all possible values of a discrete random variable with their corresponding probabilities.

Example: Suppose a family has 3 children. Show all possible gender combinations:

Now suppose we want the probability distribution for the number of girls in the family.

Draw a probability distribution table for this example.

Χ	0	1	2	3		
P(x)	1/8	3/2	3/8	1/8	=	(%)

Find P(X > 2)
$$P(X < 1)$$
 $P(1 < X \le 3) = \frac{3}{8} + \frac{1}{8} = \frac{1}{2}$
= $P(X = 3) = \frac{1}{8}$

mean

The mean, or expected value, of a random variable X is found with the following formula $\mu_X = E[X] = x_1 p_1 + x_2 p_2 + \cdots + x_n p_n$

What is the expected number of girls in the family above?

$$E[x] = O(\frac{1}{8}) + I(\frac{3}{8}) + 2(\frac{3}{8}) + 3(\frac{1}{8}) = \frac{3}{2}$$

The variance of a random variable *X* can be found using the following:

$$\int \sigma_X^2 = Var[X] = (x_1 - \mu_X)^2 p_1 + (x_2 - \mu_X)^2 p_2 + \dots + (x_n - \mu_X)^2 p_n$$
$$= \sum (x_i - \mu_X)^2 p_i$$

An alternate formula is:

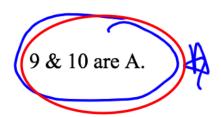
$$\sigma_X^2 = Var[X] = E[X^2] - (E[X])^2$$

Find the **standard deviation** for the number of girls in the example above.

$$\frac{\times 0}{3} = \frac{1}{2} = \frac{1}{2} = \frac{1}{3} = \frac{$$

Popper 02

$$=\frac{1}{25}+\frac{3}{50}+\frac{1}{20}+\frac{1}{100}+x$$


Given the following sampling distribution:

X	-18	-14	2	11	20
P(X)	1/25	3/50	1/20	1/100	

- 7. What is P(X=20)?
 - a. 16/100
- b. 84/100
- c. 53/100
- d. none of these

- 8. What is P(X>2)? P(X=11) + P(X=20)a. 24/25 b. 9/10 c. 85/100

d. none of these

