Math 2311

Bekki George - bekki@math.uh.edu
Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm

And by appointment
Class webpage: http://www.math.uh.edu/~bekki/Math2311.html

Last week:

- Population
- Sample
- Mean
- Median
- Mode
- Five number summary
- IQR
- Variance
- Standard Deviation

We also talked about some graphs:

- Bar plot
- Histogram
- Stem and leaf plot
- Dot plot

1.5 continued:

Boxplots not only help identify features about our data quickly (such as spread and location of center) but can be very helpful when comparing data sets.

How to make a box plot:

1. Order the values in the data set in ascending order (least to greatest).
2. Find and label the median.
3. Of the lower half (less than the median - do not include), find and label Q1.
4. Of the upper half (greater than the median - do not include), find and label Q3.
5. Label the minimum and maximum.
6. Draw and label the scale on an axis.
7. Plot the five number summary.
8. Sketch a box starting at Q1 to Q3.
9. Sketch a segment within the box to represent the median.
10. Connect the min and max to the box with line segments.

Note: If data contains outliers, a box and whiskers plot can be used instead to display the data. In a box and whiskers plot, the outliers are displayed with dots above the value and the segments begin (or end) at the next data value within the outlier interval.

A pie chart is a circular chart, divided into sectors, indicating the proportion of each data value compared to the entire set of values. Pie charts are good for categorical data.

A cumulative frequency plot of the percentages (also called an ogive) can be used to vien the total number of events that occurred up to a certain value.

Example: Here is an ogive for Hudson Auto Repair's cost of parts sold:
Example: Hudson Auto Repair

- Ogive with Cumulative Percent Frequencies

Where is the median of this data?

Patterns and shapes:

Uniform graphs

Symmetric graphs

Some other features
Bell Shaped

Skewed right

Skewed left

2.1-Counting Techniques

Combinatorics is the study of the number of ways a set of objects can be arranged, combined, or chosen; or the number of ways a succession of events can occur. Each result is called an outcome. An event is a subset of outcomes. When several events occur together, we have a compound event.

The Fundamental Counting Principle states that the total number of a ways a compound event may occur is $n_{1} \cdot n_{2} \cdot n_{3} \cdot \ldots \cdot n_{i}$ where ${ }^{n_{1}}$ represents the number of ways the first event may occur, ${ }^{n_{2}}$ represents the number of ways the second event may occur, and so on.

Example:
How many ways can you create a pizza choosing a meat and two veggies if you have 3 choices of meats and 4 choices for veggies?

A permutation of a set of n objects is an ordered arrangement of the objects.

$$
{ }_{n} P_{n}=n(n-1)(n-2) \ldots . .3 \cdot 2 \cdot 1=n!
$$

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

Examples:

In how many ways can 6 people be seated in a row?

In how many ways can 3 of the six symbols, $\& \wedge \% \$ \# @$ be arranged?

When we allow repeated values, The number of orderings of n objects taken r at a time, with repetition is n^{r}.
Example:
In how many ways can you write 4 letters on a tag using each of the letters C O U G AR with repetition?

The number of permutations, P , of n objects taken n at a time with r objects alike, s of another kind alike, and t of another kind alike is

$$
P=\frac{n!}{r!s!t!}
$$

Example:
How many different words (they do not have to be real words) can be formed from the letters in the word MISSISSIPPI?

The number of circular permutations of n objects is $(n-1)$! Example:
In how many ways can 12 people be seated around a circular table?

A combination gives the number of ways of picking r unordered outcomes from n possibilities. The number of combinations of a set of n objects taken r at a time is ${ }_{n} C_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!}$

Example:

In how many ways can a committee of 5 be chosen from a group of 12 people?

Section 2.2 - Sets and Venn Diagrams

A set is a collection of objects. Two sets are equal if they contain the same elements. Set A is a subset of set B if every element that is in set A is also in set B. The notation for this is $A \subseteq B$.

Set A is a proper subset of set B if every element that is in set A is also in set B and there is at least one element in set B that is not in set A. The notation for this is $A \subset B$.

The union of A and B, which is written as $A \cup B$, is the set of all elements that belong either to set A or to set B (or that belong to both A and B).

The intersection of A and B, which is written as $A \cap B$, is the set of all elements that belong to both to set A and set B. If the intersection of two sets is empty (the empty set is denoted by \varnothing, then the sets are disjoint or mutually exclusive and we write $A \cap B=\varnothing$.

The complement of set A, which is written as A^{c}, is the set of all elements that are in the universal set but are not in set A.

Examples:

Use the following information to answer the questions:

$$
\begin{aligned}
U & =\{1,2,3,4,5,6,7,8,9,10\} \\
A & =\{1,2,5,6,9,10\} \\
B & =\{3,4,7,8\} \\
C & =\{2,3,8,9,10\}
\end{aligned}
$$

Find:

$$
\begin{array}{lll}
A^{c} & A \cup C & A \cap B \\
(B \cup C)^{c} & A \cap C \cap C
\end{array}
$$

Venn diagrams can be used to represent sets.

Examples:

Draw a Venn Diagram for the following situation: A group of 100 people are asked about their preference for soft drinks. The results are as follows:

55 Like Coke
25 Like Diet Coke
45 Like Pepsi
15 like Coke and Diet Coke
5 Like all 3 soft drinks
25 Like Coke and Pepsi
5 Only like Diet Coke

