Math 2311

Bekki George - bekki@math.uh.edu
Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm

And by appointment
Class webpage: http://www.math.uh.edu/~bekki/Math2311.html

Math 2311
Class Notes for Section 2.2-2.4

Last week:

- Reviewed graphs
- Counting techniques
- Venn Diagrams

Some Review:
How many ways can you line 4 people up for a picture?

How many ways can you choose 4 people from 10 for a committee?

How many ways can you arrange the letters of CASABLANCA?

How many ways can you get a 5 card poker hand?

How many ways can you get a full house 5 card poker hand?

Draw a Venn Diagram for the following situation: A group of 100 people are asked about their preference for soft drinks. The results are as follows:

55 Like Coke
25 Like Diet Coke
45 Like Pepsi
15 like Coke and Diet Coke
5 Like all 3 soft drinks
25 Like Coke and Pepsi
5 Only like Diet Coke

Section 2.3-Basic Probability Models

The probability of any outcome of a random phenomenon is the proportion of times the outcome would occur in a very long series of repetitions.

The sample space of a random phenomenon is the set of all possible outcomes.

An event is an outcome or a set of outcomes of a random phenomenon. It is a subset of the sample space. A simple event is an event consisting of exactly one outcome.

To compute the probability of some event E occurring, divide the number of ways that E can occur by the number of possible outcomes the sample space, S, can occur:

$$
P(E)=\frac{n(E)}{n(S)}
$$

Basic Rules of Probability

1. All events have a probability between zero and one. $0 \leq P(E) \leq 1$
2. All possible outcomes together must have a probability of one. $P(S)=1$
3. Complement Rule: For any event $E, P\left(E^{c}\right)=1-P(E)$
4. Addition Rule: If A and B are disjoint events, then $P(E \cup F)=P(E)+P(F)$
5. If E and F are any events of an experiment, then $P(E \cup F)=P(E)+P(F)-P(E \cap F)$

Examples:

1. Suppose we draw a single card from a deck of 52 fair playing cards.
a. What is the probability of drawing a heart?
b. What is the probability of drawing a queen?
2. If 5 marbles are drawn at random all at once from a bag containing 8 white and 6 black marbles, what is the probability that 2 will be white and 3 will be black?
3. The qualified applicant pool for six management trainee positions consists of seven women and five men.
a. What is the probability that a randomly selected trainee class will consist entirely of women?
b. What is the probability that a randomly selected trainee class will consist of an equal number of men and women?
4. A sports survey taken at UH shows that 48% of the respondents liked soccer, 66% liked basketball and 38% liked hockey. Also, 30% liked soccer and basketball, 22% liked basketball and hockey, and 28% liked soccer and hockey. Finally, 12% liked all three sports.
a. What is the probability that a randomly selected student likes basketball or hockey? Solve this by also using an appropriate formula.
b. What is the probability that a randomly selected student does not like any of these sports?

Section 2.4 - General Probability Rules

Two events are independent if knowing that one occurs does not change the probability that the other occurs. (Note: This is not the same as sets that are disjoint or mutually exclusive)

If E and F are independent events, then $P(E \cap F)=P(E) P(F)$

Example:
5. If $\mathrm{P}(\mathrm{A})=.36$ and $\mathrm{P}(\mathrm{B})=.58$ and A and B are independent,
a. What is $\mathrm{P}(\mathrm{A}$ and B$)$?
b. What is the probability of A or B occurring?

Dependent events, the occurrence of one event does have an effect on the occurrence of the other event. The probability $P(E \mid F)$ is read "the probability of event E given event F had already occurred". If E and F are independent, then $P(E \mid F)=P(E)$.
If events E and F are dependent then $P(E \mid F)=\frac{P(E \cap F)}{P(F)}$.

This means $P(E \cap F)=$

Examples:
6. A clothing store that targets young customers (ages 18 through 22) wishes to determint whether the size of the purchase is related to the method of payment. A sample of 300 customers was analyzed and the information is below:

	Cash	Credit	Layaway	Total
Under $\$ 40$	60	30	10	100
$\$ 40$ or more	40	100	60	200
Total	100	130	70	300

a. If a customer is selected at random from this group of customers, what is the probability that the customer paid cash?
b. If a customer is selected at random from this group of customers, what is the probability that the customer paid with a credit card?
c. If a customer is selected at random from this group of customers, what is the probability that the customer paid with the layaway plan?
d. If a customer is selected at random from this group of customers, what is the probability that the customer purchased under $\$ 40$?
e. If a customer is selected at random from this group of customers, what is the probability that the customer purchased $\$ 40$ or more?
f. If a customer is selected at random from this group of customers, what is the probability that the customer paid with a credit card given that the purchase was under $\$ 40$?
g. If a customer is selected at random from this group of customers, what is the probability that the customer paid with the layaway plan given that the purchase was $\$ 40$ or more?
7. Determine if events A and B are independent.
a. $\quad P(A)=0.9, P(B)=0.3, P(A \cap B)=0.27$
b. $P(A)=0.4, P(B)=0.6, P(A \cap B)=0.20$

