Math 2311

Bekki George - bekki@math.uh.edu
Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm

And by appointment
Class webpage: http://www.math.uh.edu/~bekki/Math2311.html

Math 2311
Class Notes for More Probability Review and Section 3.1
\#21 from text:
Thirty percent of the students at a local high school face a disciplinary action of some kind before they graduate. Of those "felony" students, 40% go on to college. Of the ones who do not face a disciplinary action, 60% go on to college.
a.What is the probability that a randomly selected student both faced a disciplinary action and went on to college?
b. What percent of the students from the high school go on to college?
c. Show if events \{faced disciplinary action\} and \{went to college\} are independent or not.

Suppose you are playing poker with a standard deck of 52 cards:

How many 5 card hands are possible?

How many ways can you get 4 kings in a hand?

How many ways can you have any 4 of a kind hand?

What is the probability of getting 4 of a kind?

How many ways can you have 3 kings and 2 fives?

How many ways can you get a full house?

What is the probability of getting a full house?

Problems from Quiz 2:

A researcher randomly selects 2 fish from among 10 fish in a tank and puts each of the 2 selected fish into different containers. How many ways can this be done?

An experimenter is randomly sampling 4 objects in order from among 61 objects. What is the total number of samples in the sample space?

How many license plates can be made using 3 digits and 4 letters if repeated digits and letters are not allowed?

Let $A=\{2,7\}, B=\{7,16,22\}, D=\{34\}$ and $S=$ sample space $=A \cup B \cup D$. Find $\left(A^{c} \cap B^{c}\right)^{c}$.

In a shipment of 71 vials, only 13 do not have hairline cracks. If you randomly select one vial from the shipment, what is the probability that it has a hairline crack?

In a shipment of 54 vials, only 16 do not have hairline cracks. If you randomly select 3 vials from the shipment, what is the probability that none of the 3 vials have hairline cracks?

The probability that a randomly selected person has high blood pressure (the event H) is $\mathrm{P}(\mathrm{H})=0.4$ and the probability that a randomly selected person is a runner (the event R) is $P(R)=0.3$. The probability that a randomly selected person has high blood pressure and is a runner is 0.2 . Find the probability that a randomly selected person either has high blood pressure or is a runner or both.

Hospital records show that 16% of all patients are admitted for heart disease, 26% are admitted for cancer (oncology) treatment, and 8% receive both coronary and oncology care. What is the probability that a randomly selected patient is admitted for coronary care, oncology or both? (Note that heart disease is a coronary care issue.)

What is the probability that a randomly selected patient is admitted for something other than coronary care?

Section 3.1

A random variable is a variable whose value is a numerical outcome of a random phenomenon. It assigns one and only one numerical value to each point in the sample space for a random experiment.

A discrete random variable is one that can assume a countable number of possible values A continuous random variable can assume any value in an interval on the number line.

A probability distribution table of X consists of all possible values of a discrete random variable with their corresponding probabilities.

Example: Suppose a family has 3 children. Show all possible gender combinations:

Now suppose we want the probability distribution for the number of girls in the family.

Draw a probability distribution table for this example.

Find $P(X>2)$
$P(X<1)$
$\mathrm{P}(1<\mathrm{X} \leq 3)$

The mean, or expected value, of a random variable X is found with the following formula $\mu_{X}=E[X]=x_{1} p_{1}+x_{2} p_{2}+\cdots+x_{n} p_{n}$

What is the expected number of girls in the family above?

The variance of a random variable X can be found using the following: $\sigma_{X}^{2}=\operatorname{Var}[X]=\left(x_{1}-\mu_{X}\right)^{2} p_{1}+\left(x_{2}-\mu_{X}\right)^{2} p_{2}+\cdots+\left(x_{n}-\mu_{X}\right)^{2} p_{n}$

$$
=\sum\left(x_{i}-\mu_{X}\right)^{2} p_{i}
$$

An alternate formula is:

$$
\sigma_{X}^{2}=\operatorname{Var}[X]=E\left[X^{2}\right]-(E[X])^{2}
$$

Find the standard deviation for the number of girls in the example above.

