Math 2311

Bekki George – <u>bekki@math.uh.edu</u> Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment

Class webpage: http://www.math.uh.edu/~bekki/Math2311.html

5.5 – Non-Linear Methods

Many times a scatter-plot reveals a curved pattern instead of a linear pattern.

We can **transform** the data by changing the scale of the measurement that was used when the data was collected. In order to find a good model we may need to transform our *x* value or our *y* value or both.

In this example from section 5.4, we saw that the linear model was not a good fit for this data:

Year	1790	1800	1810	1820	1830	1840	1850	1860	1870	1880
People per square mile	4.5	6.1	4.3	5.5	7.4	9.8	7.9	10.6	10.09	14.2
Year	1890	1900	1910	1920	1930	1940	1950	1960	1970	1980
People per square mile	17.8	21.5	26	29.9	34.7	37.2	42.6	50.6	57.5	64

Let's investigate other models.

5.6 – Relations in Categorical Data

A two-way table organizes the data for two categorical variables.

The totals of each row and column are considered **marginal distributions** because they appear in the margins of the table.

Example:

The following two-way table describes the preferences in movies and pizza toppings for a random sample of 100 people.

Movie	Pepperoni	Hamburger	Mushrooms	
Jurassic Park	20	5	10	
Star Wars	15	15	12	
Gone with the Wind	8	2	13	

Enter the marginal distributions in the table.

Draw a bar chart to display the marginal distribution of pizza topping preference.

What percent of our sample likes Gone with the Wind?

What percent of pepperoni lovers like Star Wars?

A conditional distribution is made up of the percentages that satisfy a given condition.

Compare the conditional distributions of movie preference for hamburger lovers and mushroom lovers. Back up your description with percentages.

Popper 12

The following two-way table describes the preferences in music genre and pizza toppings for a random sample of 100 people.

	Cheese	Peperoni	Mushrooms
Techno	20	5	15
Country	8	12	11
Rock	14	2	13

- 2. What percent of the sample likes rock music?
- 3. What percent of cheese lovers like techno music?

Always be careful if combining data to make a comparison. **Simpson's Paradox** is the reversal of the direction of a comparison or an association when data from several groups are combined to form a single group.

This is adapted from Subsection 2.3.2 of A. Agresti (2002), *Categorical Data Analysis*, 2nd ed., Wiley, pp. 48-51.

In a 1991 study by Radelet and Pierce of the effect of race on death-penalty sentences, the following table was obtained tabulating the death-penalty sentences (Death) and non-death-penalty sentences (No death) in murder convictions in the state of Florida.

Defendant's	Death	No death	Percent death
race			
Caucasian	53	430	11.0
African-	15	176	7.9
American			

From this table, we see Caucasian defendants received the death penalty more often than African-American defendants.

Now, we consider *the very same data*, except that we stratify according to the **race of the victim** of the murder. Below is the table.

Victim's	Defendant's	Death	No death	Percent
race	race			death
Caucasian	Caucasian	53	414	11.3
Caucasian	African-	11	37	22.9
	American			
African-	Caucasian	0	16	0.0
American				
African-	African-	4	139	2.8
American	American			

Here we see that when considering the cases involving Caucasian victims separately from the cases involving African-American victims, that the African-American *defendants* are more likely than Caucasian ones to receive the death penalty in both instances (22.9% vs 11.3% in the first case and 2.8% vs. 0.0% in the second case).

Example 3 (from text): A drug company tests two new treatments for an illness. In trial 1, drug *A* cures 45 out of 200 of the patients with the illness and drug B cures 32 out of 200 patients with the illness. In trial 2, 100 patients with the illness are given drug A and 85 of them are cured. Drug B is given to 500 patients in trial 2 and 400 are cured.

A. Create a table for each trial and compare results. Which treatment would you conclude is better based on the data in the tables?

Trial	Cur	Tot	Perce	Trial	Cur	Tot	Perce
1	ed	al	nt	2	ed	al	nt
Drug	45	200	22.5	Drug	85	100	85%
A			%	A			
Drug	32	200	16%	Drug	400	500	80%
В				В			

B. Put the data together into one table and calculate the percentage cured for the aggregated data. Which treatment would you conclude is better based on the data in this table?

Trials 1 and 2 combined	Cured	Total	Percent
Drug A	130	300	43.3%
Drug B	432	700	61.7%

Popper 12

- 4. Simpson's Paradox occurs when
- 5. LSRL stands for: