Trigonometric formulas

$\sin ^{2} \theta+\cos ^{2} \theta=1$	$1+\tan ^{2} \theta=\sec ^{2} \theta$	$1+\cot ^{2} \theta=\csc ^{2} \theta$
$\sin (-\theta)=-\sin \theta$	$\cos (-\theta)=\cos \theta$	$\tan (-\theta)=-\tan \theta$
$\sin (A+B)=\sin A \cos B+\sin B \cos A$	$\sin (A-B)=\sin A \cos B-\sin B \cos A$	
$\cos (A+B)=\cos A \cos B-\sin A \sin B$	$\cos (A-B)=\cos A \cos B+\sin A \sin B$	
$\sin 2 \theta=2 \sin \theta \cos \theta$	$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta$	
$\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{1}{\cot \theta}$	$\cot \theta=\frac{\cos \theta}{\sin \theta}=\frac{1}{\tan \theta}$	$\sec \theta=\frac{1}{\cos \theta}$
$\cos \theta=\frac{1}{\sin \theta}$	$\cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta$	$\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta$

Differentiation formulas

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$	$\frac{d}{d x}(f g)=f g^{\prime}+g f^{\prime}$	$\frac{d}{d x}\left(\frac{f}{g}\right)=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$
$\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$	$\frac{d}{d x}(\sin x)=\cos x$	$\frac{d}{d x}(\cos x)=-\sin x$
$\frac{d}{d x}(\tan x)=\sec ^{2} x$	$\frac{d}{d x}(\cot x)=-\csc ^{2} x$	$\frac{d}{d x}(\sec x)=\sec x \tan x$
$\frac{d}{d x}(\csc x)=-\csc x \cot x$	$\frac{d}{d x}\left(e^{x}\right)=e^{x}$	$\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a$
$\frac{d}{d x}(\ln x)=\frac{1}{x}$	$\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$	$\frac{d}{d x}\left(\cos ^{-1} x\right)=\frac{-1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$		

Integration formulas

$\int a d x=a x+C$	$\int x^{x} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1$	$\int \frac{1}{x} d x=\ln x+C$
$\int e^{x} d x=e^{x}+C$	$\int a^{x} d x=\frac{a^{x}}{\ln a}+C$	$\int \ln x d x=x \ln x-x+C$
$\int \sin x d x=-\cos x+C$	$\int \cos x d x=\sin x+C$	$\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right)+C$
$\int \cot x d x=\ln (\sin x)+C$	$\int \sec x d x=\ln (\sec x+\tan x)+C$	$\int \csc x d x=\ln (\csc x-\cot x)+C$
$\int \sec ^{2} x d x=\tan x+C$	$\int \sec x \tan x d x=\sec x+C$	$\int \csc ^{2} x d x=-\cot x+C$
$\int \csc x \cot x d x=-\csc x+C$	$\int \tan ^{2} x d x=\tan x-x+C$	$\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
$\int \tan x d x=\ln (\sec x)+C$ or $-\ln (\cos x)+C$		

If the
 Then
 And Use the Identity

$a^{2}-u^{2}$	$u=a \sin \theta$	$1-\sin ^{2} \theta=\cos ^{2} \theta$
$a^{2}+u^{2}$	$u=a \tan \theta$	$1+\tan ^{2} \theta=\sec ^{2} \theta$
$u^{2}-a^{2}$	$u=a \sec \theta$	$\sec ^{2} \theta-1=\tan ^{2} \theta$

$y=D+A \sin B(x-C) \quad \mathbf{A}$ is amplitude \mathbf{B} is the affect on the period (stretch or shrink)
C is vertical shift (left/right) and D is horizontal shift (up/down)
Limits:
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
$\lim _{x \rightarrow \infty} \frac{\sin x}{x}=0$
$\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$

Exponential Growth and Decay

$$
y=C e^{k t}
$$

Rate of Change of a variable y is proportional to the value of y

$$
\frac{d y}{d x}=k y \quad \text { or } \quad y^{\prime}=k y
$$

Formulas and theorems

1. A function $y=f(x)$ is continuous at $x=a$ if

i. $f(a)$ exists
ii. $\lim _{x \rightarrow a} f(x)$ exists, and
iii. $\lim _{x \rightarrow a} f(x)=f(a)$
2. Even and odd functions

1. A function $y=f(x)$ is even if $f(-x)=f(x)$ for every x in the function's domain. Every even function is symmetric about the y-axis.
2. A function $y=f(x)$ is odd if $f(-x)=-f(x)$ for every x in the function's domain. Every odd function is symmetric about the origin.

3. Horizontal and vertical asymptotes

1. A line $y=b$ is a horizontal asymptote of the graph of $y=f(x)$ if either $\lim _{x \rightarrow \infty} f(x)=b$ or $\lim _{x \rightarrow-\infty} f(x)=b$.
2. A line $x=a$ is a vertical asymptote of the graph of $y=f(x)$ if either

$$
\lim _{x \rightarrow a^{+}} f(x)= \pm \infty \lim _{x \rightarrow a^{-}} f(x)= \pm \infty .
$$

4. Definition of a derivative

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

5. To find the maximum and minimum values of a function $y=f(x)$, locate
6. . the points where $f^{\prime}(x)$ is zero or where $f^{\prime}(x)$ fails to exist
7. the end points, if any, on the domain of $f(x)$.

Note: These are the only candidates for the value of x where $f(x)$ may have a maximum or a minimum
6. Let f be differentiable for $\boldsymbol{a}<\boldsymbol{x}<\boldsymbol{b}$ and continuous for $\boldsymbol{a} \leq \boldsymbol{x} \leq \boldsymbol{b}$.
a. If $f^{\prime}(x)>0$ for every x in (a, b), then f is increasing on $[a, b]$.
b. If $f^{\prime}(x)<0$ for every x in (a, b), then f is decreasing on $[a, b]$.
7. Suppose that $\mathbf{f}^{\prime \prime}(\mathrm{x})$ exists on the interval (\mathbf{a}, b).
a. If $f^{\prime \prime}(x)>0$ in (a, b), then f is concave upward in (a, b).
b. If $f^{\prime \prime}(x)<0$ in (a, b), then f is concave downward in (a, b).

To locate the points of inflection of $y=f(x)$, find the points where $f^{\prime \prime}(x)=0$ or where $f^{\prime \prime}(x)$ fails to exist. These are the only candidates where $f(x)$ may have a point of inflection. Then test these points to make sure that $f^{\prime \prime}(x)<0$ on one side and $f^{\prime \prime}(x)>0$ on the other.

8. Mean value theorem

If f is continuous on $[a, b]$ and differentiable on (a, b), then there is at least one number c in (a, b) such that $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$.

9. Continuity

If a function is differentiable at a point $x=a$, it is continuous at that point. The converse is false, i.e. continuity does not imply differentiability.

10. L'Hôpital's rule

If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$, and if $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.

11. Area between curves

If f and g are continuous functions such that $f(x) \geq g(x)$ on $[a, b]$, then the area between the curves is $\int_{a}^{b}(f(x)-g(x)) d x$.

12. Inverse functions

a. If f and g are two functions such that $f(g(x))=x$ for every x in the domain of g, and, $g(f(x))=x$, for every x in the domain of f, then, f and g are inverse functions of each other.
b. A function f has an inverse if and only if no horizontal line intersects its graph more than once.
c. If f is either increasing or decreasing in an interval, then f has an inverse.
d. If f is differentiable at every point on an interval I, and $f^{\prime}(x) \neq 0$ on I, then $g=f^{1}(x)$ is differentiable at every point of the interior of the interval $f(I)$ and

$$
g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}
$$

13. Properties of $\boldsymbol{y}=\boldsymbol{e}^{\boldsymbol{x}}$
a. The exponential function $y=e^{x}$ is the inverse function of $y=\ln x$.
b. The domain is the set of all real numbers, $-\infty<x<\infty$.
c. The range is the set of all positive numbers, $y>0$.
d. $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
e. $e^{x_{1}} \cdot e^{x_{2}}=e^{x_{1}+x_{2}}$
14. Properties of $\boldsymbol{y}=\boldsymbol{\operatorname { l n }} \boldsymbol{x}$
a. The domain of $y=\ln x$ is the set of all positive numbers, $x>0$.
b. The range of $y=\ln x$ is the set of all real numbers, $-\infty<y<\infty$.
c. $y=\ln x$ is continuous and increasing everywhere on its domain.
d. $\ln (a b)=\ln a+\ln b$.
e. $\ln (a / b)=\ln a-\ln b$.
f. In $a^{r}=r \ln a$.
15. Fundamental theorem of calculus

$$
\int_{a}^{b} f(x) d x=F(b)-F(a), \text { where } \mathrm{F}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x}), \text { or } \frac{d}{d x} \int_{a}^{x} f(x) d x=f(x)
$$

16. Volumes of solids of revolution

a. Let f be nonnegative and continuous on $[a, b]$, and let R be the region bounded above by $y=f(x)$, below by the x-axis, and the sides by the lines $x=a$ and $x=$ b.
b. When this region R is revolved about the x-axis, it generates a solid (having circular cross sections) whose volume $V=\int_{a}^{b} \pi(f(x))^{2} d x$.
c. When R is revolved about the y-axis, it generates a solid whose volume

$$
V=\int_{a}^{b} 2 \pi \cdot x \cdot f(x) d x
$$

17. Particles moving along a line

a. If a particle moving along a straight line has a positive function $x(t)$, then its instantaneous velocity $v(t)=x^{\prime}(t)$ and its acceleration $a(t)=v^{\prime}(t)$.
b. $v(t)=\int a(t) d t$ and $x(t)=\int v(t) d t$.
18. Average y-value

The average value of $f(x)$ on $[a, b]$ is $\frac{1}{b-a} \int_{a}^{b} f(x) d x$.

Summary of Convergence Tests for Series

Test	Series	Convergence or Divergence	Comments
$n^{\text {th }}$ term test (or the zero test)	$\sum a_{n}$	Diverges if $\lim _{n \rightarrow \infty} a_{n} \neq 0$	Inconclusive if $\lim _{n \rightarrow \infty} a_{n}=0$.
Geometric series	$\sum_{n=0}^{\infty} a x^{n}\left(\text { or } \sum_{n=1}^{\infty} a x^{n-1}\right)$	Converges to $\frac{a}{1-x}$ only if $\|x\|<1$ Diverges if $\|x\| \geq 1$	Useful for comparison tests if the $n^{t h}$ term a_{n} of a series is similar to $a x^{n}$.
p-series	$\sum_{n=1}^{\infty} \frac{1}{n^{p}}$	Converges if $p>1$ Diverges if $p \leq 1$	Useful for comparison tests if the $n^{t h}$ term a_{n} of a series is similar to $\frac{1}{n^{p}}$.
Integral	$\begin{gathered} \sum_{n=c}^{\infty} a_{n} \quad(c \geq 0) \\ a_{n}=f(n) \text { for all } n \end{gathered}$	Converges if $\int_{c}^{\infty} f(x) d x$ converges Diverges if $\int_{c}^{\infty} f(x) d x$ diverges	The function f obtained from $a_{n}=f(n)$ must be continuous, positive, decreasing and readily integrable for $x \geq c$.
Comparison	$\sum a_{n} \text { and } \sum b_{n}$ with $0 \leq a_{n} \leq b_{n}$ for all n	$\begin{aligned} & \sum b_{n} \text { converges } \Longrightarrow \sum a_{n} \text { converges } \\ & \sum a_{n} \text { diverges } \Longrightarrow \sum b_{n} \text { diverges } \end{aligned}$	The comparison series $\sum b_{n}$ is often a geometric series or a p-series.
Limit Comparison*	$\sum a_{n} \text { and } \sum b_{n}$ with $a_{n}, b_{n}>0$ for all n and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L>0$	$\begin{aligned} & \sum b_{n} \text { converges } \Longrightarrow \sum a_{n} \text { converges } \\ & \sum b_{n} \text { diverges } \Longrightarrow \sum a_{n} \text { diverges } \end{aligned}$	The comparison series $\sum b_{n}$ is often a geometric series or a p-series. To find b_{n} consider only the terms of a_{n} that have the greatest effect on the magnitude.
Ratio	$\sum a_{n}$ with $\lim _{n \rightarrow \infty} \frac{\left\|a_{n+1}\right\|}{\left\|a_{n}\right\|}=L$	Converges (absolutely) if $L<1$ Diverges if $L>1$ or if L is infinite	Inconclusive if $L=1$. Useful if a_{n} involves factorials or $n^{t h}$ powers.
Root*	$\sum a_{n}$ with $\lim _{n \rightarrow \infty} \sqrt[n]{\left\|a_{n}\right\|}=L$	Converges (absolutely) if $L<1$ Diverges if $L>1$ or if L is infinite	Test is inconclusive if $L=1$. Useful if a_{n} involves $n^{\text {th }}$ powers.
Absolute Value $\sum\left\|a_{n}\right\|$	$\sum a_{n}$	$\sum\left\|a_{n}\right\|$ converges $\Longrightarrow \sum a_{n}$ converges	Useful for series containing both positive and negative terms.
Alternating series	$\sum_{n=1}^{\infty}(-1)^{n-1} a_{n} \quad\left(a_{n}>0\right)$	Converges if $0<a_{n+1}<a_{n}$ for all n and $\lim _{n \rightarrow \infty} a_{n}=0$	Applicable only to series with alternating terms.

Sequence and Series Summary

Formulas

1. If a sequence $\left\{a_{n}\right\}$ has a limit L, that is, $\lim _{n \rightarrow \infty} a_{n}=L$, then the sequence is said to converge to L. If there is no limit, the series diverges. If the sequence $\left\{a_{n}\right\}$ converges, then its limit is unique. Keep in mind that
$\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0 ; \quad \lim _{n \rightarrow \infty} x^{\left(\frac{1}{n}\right)}=1 ; \quad \lim _{n \rightarrow \infty} \sqrt[n]{n}=1 ; \quad \lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$. These limits are useful and arise frequently.
2. The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges; the geometric series $\sum_{n=0}^{\infty} a r^{n}$ converges to $\frac{a}{1-r}$ if $|r|<1$ and diverges if $|r| \geq 1$ and $a \neq 0$.
3. The p -series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.
4. Limit Comparison Test: Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be a series of nonnegative terms, with $a_{n} \neq 0$ for all sufficiently large n, and suppose that $\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}=c>0$. Then the two series either both converge or both diverge.
5. Alternating Series: Let $\sum_{n=1}^{\infty} a_{n}$ be a series such that
i) the series is alternating
ii) $\quad\left|a_{n+1}\right| \leq\left|a_{n}\right|$ for all n, and
iii) $\quad \lim _{n \rightarrow \infty} a_{n}=0$

Then the series converges.
6. A series $\sum a_{n}$ is absolutely convergent if the series $\sum\left|a_{n}\right|$ converges. If $\sum a_{n}$ converges, but $\sum\left|a_{n}\right|$ does not converge, then the series is conditionally convergent. Keep in mind that if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
7. Comparison Test: If $0 \leq a_{n} \leq b_{n}$ for all sufficiently large n, and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges. If $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} b_{n}$ diverges.
8. Integral Test: If $f(x)$ is a positive, continuous, and decreasing function on $[1, \infty)$ and let $a_{n}=f(n)$. Then the series $\sum_{n=1}^{\infty} a_{n}$ will converge if the improper integral $\int_{1}^{\infty} f(x) d x$ converges. If the improper integral $\int_{1}^{\infty} f(x) d x$ diverges, then the infinite series $\sum_{n=1}^{\infty} a_{n}$ diverges.
9. Ratio Test: Let $\sum a_{n}$ be a series with nonzero terms.
i) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$, then the series converges absolutely.
ii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1$, then the series is divergent.
iii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, then the test is inconclusive (and another test must be used).
10. Power Series: A power series is a series of the form
$\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}+\ldots$ or
$\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots+c_{n}(x-a)^{n}+\ldots$ in which the
center a and the coefficients $c_{0}, c_{1}, c_{2}, \ldots, c_{n}, \ldots$ are constants. The set of all numbers x for which the power series converges is called the interval of convergence.
11. Taylor Series: Let f be a function with derivatives of all orders throughout some interval containing a as an interior point. Then the Taylor series generated by f at a is

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+. .
$$

The remaining terms after the term containing the nth derivative can be expressed as a remainder to Taylor's Theorem:

$$
f(x)=f(a)+\sum_{1}^{n} f^{(n)}(a)(x-a)^{n}+R_{n}(x) \text { where } R_{n}(x)=\frac{1}{n!} \int_{a}^{x}(x-t)^{n} f^{(n+1)}(t) d t
$$

Lagrange's form of the remainder: $R_{n} x=\frac{f^{(n+1)}(c)(x-a)^{n+1}}{(n+1)!}$, where $a<c<x$. The series will converge for all values of x for which the remainder goes to zero.
12. Frequently Used Series

$$
\begin{aligned}
& \frac{1}{1-x}=1+x+x^{2}+\ldots+x^{n}+\ldots=\sum_{n=0}^{\infty} x^{n},|x|<1 \\
& \frac{1}{1+x}=1-x+x^{2}-\ldots+(-x)^{n}+\ldots=\sum_{n=0}^{\infty}(-1)^{n} x^{n},|x|<1 \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!},|x|<\infty \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+\ldots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!},|x|<\infty \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\ldots=\sum_{n=0}^{\infty} \frac{(-1) x^{2 n}}{(2 n)!},|x|<\infty \\
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots+(-1)^{n-1} \frac{x^{n}}{n}+\ldots=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n},-1<x \leq 1 \\
& \operatorname{Arctan} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\ldots+(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+\ldots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1},|x| \leq 1
\end{aligned}
$$

Indeterminate Form:
$\frac{0}{0}, \frac{\infty}{\infty} \Rightarrow$ Apply L'Hopital Directly
$0 . \infty \quad \Rightarrow \quad$ Rewrite as either $\frac{0}{0}$ or $\frac{\infty}{\infty}$
Then apply L'Hopital
$1^{\infty}, 0^{0}, \infty^{0} \Rightarrow 1$. Consider the limit of the \ln of the function.
2. Use laws of logs to rewrite in the form $0 \cdot \infty$.
3. Rewrite as either $\frac{0}{0}$ or $\frac{\infty}{\infty}$.
4. Apply L'Hopital.
5. Exponentiate your answer.
$\infty-\infty \quad \Rightarrow \quad$ Try to rewrite so that you can use one of the previous forms.

To convert polar coordinates into rectangular coordinates, we use the basic relations

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

Converting in the opposite direction we

use

$$
r^{2}=x^{2}+y^{2}, \quad \tan \theta=y / x \text { if } x \neq 0
$$

What does the graph look like?

$r=a \quad \Rightarrow$ Circle
$r=\theta \Rightarrow$ Line
$r=a+b \sin \theta$ OR $r=a+b \cos \theta$
$a>b \Rightarrow$ Dimpled Limacon
$a<b \Rightarrow$ Limacon with an inner loop
$a=b \Rightarrow$ Cardiod
$r=a \cos n \theta$ OR $r=a \sin n \theta$
n even ($n \geq 2$) \Rightarrow Rose with $2 n$ petals.
n odd $(n \geq 3) \Rightarrow$ Rose with n petals.

