Homework 1: January 17, 2017

1. Read Sections 1.1 and 1.2 from the textbook.
2. Problem 1.2.8 in Textbook (page 11).
3. Verify whether $u(x, t)=3 t+x^{2}$ satisfies the following heat equation:

$$
u_{t}=\frac{3}{2} u_{x x}
$$

4. Let α and β be some positive constants. Determine the constant C such that $w(x, t)=e^{-\alpha t} \cos \beta x+C t$ satisfies the following heat equation with a source term:

$$
u_{t}=\frac{\alpha}{\beta^{2}} u_{x x}+4, \quad t>0, x \in \mathbf{R} .
$$

5. Specify the order of the following PDEs:

- $u_{t t}=u_{x}+u_{y}$
- $u_{t}-u_{x}=3 x$
- $6 u_{x x}+6 x u_{y y}=u$

6. Consider the following heat equation

$$
\begin{equation*}
4 u_{t}=u_{x x}, \quad x \in(0,2), t>0 \tag{1}
\end{equation*}
$$

Verify whether the following functions satisfy equation (1):

- $f(x, t)=2 \sin (\pi x / 2) \exp \left(-\pi^{2} t / 16\right)$
- $g(x, t)=\sin (\pi x) \exp \left(-\pi^{2} t / 4\right)$
- $h(x, t)=\sin (2 \pi x) \exp \left(-\pi^{2} t\right)$
- $k(x, t)=f(x, t)-g(x, t)-h(x, t)$.

