Homework 12: April 5, 2017

Laplace's Equation

1. Solve:

$$
\begin{aligned}
\Delta u & =0, x \in(0, L), y \in(0, H) \\
u_{x}(0, y) & =0, y \in(0, H) \\
u_{x}(L, y) & =0, y \in(0, H) \\
u(x, 0) & =0, x \in(0, L) \\
u(x, H) & =f(x), x \in(0, L) .
\end{aligned}
$$

Answer: $u(x, y)=A_{0} y+\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi y}{L} \cos \frac{n \pi x}{L}$, where the coefficients are given by: $A_{0}=\frac{1}{H L} \int_{0}^{L} f(x) d x$, and $A_{n}=\frac{1}{\sinh \frac{n \pi H}{L}} \frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x$.
2. Solve:

$$
\begin{aligned}
\Delta u & =0, x \in(0, L), y \in(0, H) \\
u_{x}(0, y) & =0, y \in(0, H) \\
u(L, y) & =g(y), y \in(0, H) \\
u(x, 0) & =0, x \in(0, L) \\
u(x, H) & =0, x \in(0, L) .
\end{aligned}
$$

Answer: $u(x, y)=\sum_{n=1}^{\infty} A_{n} \cosh \frac{n \pi x}{H} \sin \frac{n \pi y}{H}$, where the coefficients are given by: $A_{n}=\frac{1}{\cosh \frac{n \pi L}{H}} \frac{2}{H} \int_{0}^{L} g(y) \sin \frac{n \pi y}{H} d y$.
3. Solve Laplace's equation inside a quarter circle of radius 1 ($0 \leq \theta \leq \pi / 2$, $0<r \leq 1$) subject to the boundary conditions listed below:

$$
\begin{aligned}
\triangle u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} & =0,0 \leq \theta \leq \pi / 2,0<r \leq 1 \\
\frac{\partial u}{\partial \theta}(r, 0) & =0, r \in(0,1) \\
u(r, \pi / 2) & =0, r \in(0,1) \\
u(1, \theta) & =f(\theta), \theta \in(0, \pi / 2)
\end{aligned}
$$

Answer: $u(r, \theta)=\sum_{n=1}^{\infty} A_{n} r^{2 n-1} \cos (2 n-1) \theta$.

Laplace's equation in a circle will be covered in class next week; you may want to wait to solve this problem until then.

