Homework 3: January 24, 2017

1. Read from the textbook Section 1.4: "Equilibrium Temperature Distribution" (pages 14-18).
2. (Problem 1.4.1. in the text book) Determine the equilibrium temperature distribution for a one-dimensional rod with constant thermal properties with the following sources and boundary conditions:
(a) $Q=0, \quad u(0)=0, \quad u(L)=T$,
(b) $Q=0, \quad u(0)=T, \quad u(L)=0$,
(c) $Q=0, \quad u_{x}(0)=0, \quad u(L)=T$,
(d) $Q=0, \quad u(0)=T, \quad u_{x}(L)=\alpha$,
(e) $Q / K_{0}=1, \quad u(0)=T_{1}, \quad u(L)=T_{2}$,
(f) $Q=x^{2}, \quad u(0)=T, \quad u_{x}(L)=0$,
(g) $Q=0, \quad u(0)=T, \quad u_{x}(L)+u(L)=0$,
(h) $Q=0, \quad u_{x}(0)-[u(0)-T]=0, \quad u_{x}(L)=\alpha$.

In these you may assume that $u(x, 0)=f(x)$.
3. (Problem 1.4.4.) If both ends of the rod are insulated, derive using the partial differential equation, that the total thermal energy in the rod is constant.
4. (Problems 1.4.7 (a)-(c), pages 18-19.) For the following problems, determine an equilibrium temperature distribution (if one exists). For what values of β are there solutions? Explain physically.
(a) $u_{t}=u_{x x}+1, \quad u(x, 0)=f(x), \quad u_{x}(0, t)=1, \quad u_{x}(L, t)=\beta$,
(b) $u_{t}=u_{x x}, \quad u(x, 0)=f(x), \quad u_{x}(0, t)=1, \quad u_{x}(L, t)=\beta$,
(c) $u_{t}=u_{x x}+x-\beta, \quad u(x, 0)=f(x), \quad u_{x}(0, t)=0, \quad u_{x}(L, t)=0$.
5. (Problem 1.4.10.) Suppose $u_{t}=u_{x x}+4, u(x, 0)=f(x), u_{x}(0, t)=5$, $u_{x}(L, t)=6$. Calculate the total thermal energy in the one-dimensional rod (as a function of time).

Hint: use an approach similar to solving Problem 3 above.
I will ask a volunteer in the class to solve this problem on the board for extra credit.

