Homework 4: Feb 1, 2017

1. (Problem 2.2.1) Show that a linear combination of linear operators is a linear operator.
2. (Problem 2.2.2 (a)) Show that

$$
L(u)=\frac{\partial}{\partial x}\left[K_{0}(x) \frac{\partial u}{\partial x}\right]
$$

is a linear operator.
3. (Problem 2.2.3) Show that

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}+Q(u, x, t)
$$

is linear if $Q=\alpha(x, t) u+\beta(x, t)$, and, in addition, homogeneous if $\beta(x, t)=0$.
4. (Problem 2.2.4) IMPORTANT:

Superposition Principle for Nonhomogeneous Problems
(a) Consider $L(u)=f$. If u_{p} is a particular solution, i.e., $L\left(u_{p}\right)=f$, and if u_{1} and u_{2} are two homogeneous solutions, i.e., $L\left(u_{1}\right)=0, L\left(u_{2}\right)=0$, show that

$$
u=u_{p}+c_{1} u_{1}+c_{2} u_{2}
$$

is another particular solution.
(b) If $L(u)=f_{1}+f_{2}$, where $u_{p_{i}}$ is a particular solution corresponding to f_{i}, what is a particular solution for $f_{1}+f_{2}$?

