Homework 6: Feb 9, 2017

1. (Problem 2.3.3.) Consider the heat equation $u_{t}=k u_{x x}$, subject to the boundary conditions $u(0, t)=0$ and $u(L, t)=0$. Solve the initial boundary value problem if the temperature is initially:
(a) $u(x, 0)=6 \sin \frac{9 \pi x}{L}$
(b) $u(x, 0)=3 \sin \frac{\pi x}{L}-\sin \frac{3 \pi x}{L}$
(c) $u(x, 0)=2 \cos \frac{3 \pi x}{L}$
2. (Problem 2.3.4) Consider $u_{t}=k u_{x x}$, subject to $u(0, t)=0, u(L, t)=0$ and $u(x, 0)=f(x)$.
(a) What is the total heat energy in the rod as a function of time?
(b) What is the flow of heat energy out of the rod at $x=0$? at $x=L$?
3. (Problem 2.3.6) Evaluate

$$
\int_{0}^{L} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L} d x \quad \text { for } n \geq 0, m \geq 0
$$

Use trigonometric identity

$$
\cos a \cos b=\frac{1}{2}[\cos (a+b)+\cos (a-b)] .
$$

Be careful if $a-b=0$ or $a+b=0$.
4. Find the Fourier sine series for the function $f(x)=1$.
5. Using the answer from problem 4, solve the following initial-boundary value problem:

$$
\begin{aligned}
u_{t} & =u_{x x}, \quad x \in(0, L), t>0 \\
u(0, t) & =0, \quad t>0 \\
u(L, t) & =0, \quad t>0 \\
u(x, 0) & =1, \quad x \in(0, L)
\end{aligned}
$$

NOTE: PROBLEMS 4 and 5 WILL NOT BE COVERED IN QUIZ 3.

