Note: There will likely be only 5 and not 6 problems on the actual exam.

Practice Midterm Exam 1

1. (10) Consider the problem:

$$
u_{t}=u_{x x}+x-\alpha, \quad u(x, 0)=f(x), u_{x}(0, t)=0, u_{x}(L, t)=0
$$

For which value of α is there an equilibrium solution? You do not have to find the equilibrium solution.
2. (10) Is the wave equation operator $L(u)$ below linear? Prove your statement.

$$
L(u)=\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

3. (15 pts) Solve the following eigenvalue problem:

$$
\begin{aligned}
\frac{d^{2} \phi}{d x^{2}} & =-\lambda \phi, \quad x \in(-L, L) \\
\phi(-L) & =\phi(L) \\
\frac{d \phi}{d x}(-L) & =\frac{d \phi}{d x}(L) .
\end{aligned}
$$

4. Consider the heat flow in a wire of length L, thermal diffusivity 5 , modeled by the heat equation $u_{t}=5 u_{x x}$ defined for $x \in(0, L)$ and $t>0$, subject to the boundary conditions $u(0, t)=0$ and $u(L, t)=0$.
(a) (15 pts) Solve the initial boundary value problem if the temperature is initially

$$
u(x, 0)=\sin \left(\frac{4 \pi x}{L}\right) \cos \left(\frac{\pi x}{L}\right)
$$

Hint: Use the following trigonometric identity: $\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)]$ to express the initial data as the sum of two sine functions.
(b) (5 pts) What is the limit as $t \rightarrow \infty$ of the temperature distribution in the wire?
(c) (5 pts) Will the temperature distribution in the wire ever exceed 1 degree? Explain.
5. (15 pts) Suppose $u_{t}=10 u_{x x}+1, u(x, 0)=x^{2}, u_{x}(0, t)=4, u_{x}(L, t)=6$, where u denotes the temperature in a rod of length $L=1$, with specific heat $c=1$ and density $\rho=1$, and cross-sectional area $A=2$. Calculate the total thermal energy in the one-dimensional rod (as a function of time).
6. (a) (15 pts) Find the temperature distribution in a wire of length L, with thermal diffusivity $k=1$ and insulated end-points, and with the initial temperature distribution given by

$$
u(x, 0)=3+\cos \frac{2 \pi x}{L}
$$

(b) (10 pts) What is the limit as $t \rightarrow \infty$ of the temperature distribution in the wire?
(1)

$$
\begin{aligned}
\frac{d E(t)}{d t} & =c \rho \int_{0}^{L} \frac{\partial u}{\partial t} A d x=c \rho \int_{0}^{L}\left[u_{x x}+(x-\alpha)\right] A d x= \\
& =c \rho A \underbrace{\left[\left[u_{x}\right]_{0}^{L}\right.}_{=0}+\left(\frac{x^{2}}{2}-\alpha_{x}\right)]_{0}^{L}=0 \\
& \Rightarrow \frac{L}{2}=\alpha
\end{aligned}
$$

(2) $L\left(c_{1} u_{1}+c_{2 u_{2}}\right)^{2}=c_{1} l\left(u_{1}\right)+c_{2} L\left(u_{2}\right) \ldots$ (see next page)
(3)

$$
\phi(x)=A \cos \sqrt{\lambda} x+B \sin \sqrt{\lambda} x
$$

$$
\phi(-L)=A \cos \delta x L-B \sin \sqrt{\lambda} L=A \cos \sqrt{\lambda} L+B \sin \sqrt{\lambda} \alpha
$$

(*)

$$
\Rightarrow 2 B \sin \sqrt{\lambda L}=0>\sqrt{\lambda \lambda} L=n \pi, n=\hbar 2, \cdots
$$

$$
\begin{aligned}
\phi^{\prime} & =-\sqrt{\lambda} \sin \sqrt{\lambda} x+B \sqrt{\lambda} \cos \sqrt{\lambda} x \\
\phi^{\prime}(-L) & =+\sqrt{\lambda} A \sin \sqrt{\lambda} L+B \sqrt{\lambda} \cos \sqrt{\lambda} L= \\
\phi^{\prime}(L) & =-\sqrt{\lambda} A \sin \sqrt{\lambda L}+B \sqrt{\lambda} \cos \sqrt{\lambda} L \\
& \Rightarrow 2 \sqrt{2}=0
\end{aligned}
$$

(4*) $\quad \Rightarrow 2 \sqrt{\lambda}$
$D \nmid \angle B=O$
To have both conditions satisfied at the same time

$$
\begin{aligned}
& \sqrt{1} L=n \pi, n=1,2, \ldots, \\
& \phi_{n}(x)=A_{n} \cos \frac{n \pi x}{L}+B_{n} \sin \frac{n \pi x}{L} \\
& \left.\phi_{n}(x)=\cos \frac{n \pi x}{L}, \sin \frac{n \pi x}{L}\right)^{2}
\end{aligned}
$$

$$
\phi_{n}(x)=A_{n} \cos \frac{n \pi x}{L}+B_{n} \sin \frac{n \pi x}{L}
$$

$$
\text { For } \lambda=0 \Rightarrow \phi_{0}=\cos 0=1
$$

(4) (a) $u(x, t)=\frac{1}{2} \sin \frac{5 \pi x}{L} e^{-5\left(\frac{5 \pi}{L}\right)^{2} t}+\frac{1}{2} \sin \frac{3 \pi x}{L} e^{-5(3 \pi)^{2} t}$
(b) $\lim _{t \rightarrow \infty} u(x, t)=0$
(0) Since $e^{-\xi} \leq 1$ for $\xi \geqslant 0$, and since $|\sin \alpha| \leqslant 1$ we get that $|u(x, t)| \leq 1, \forall(x, t), t>0$ This means that there is no heat source in this problem that would mako the max of initial temperature increase in time.
(5)

$$
\begin{aligned}
& \frac{d E(t)}{d t}=c \rho A \int_{0}^{L}\left(10 u_{x x}+1\right) d x=2\left[\left[u_{x}\right]_{x=0}^{L}+[x]_{x=0}^{L}\right] \\
&=2[(6-4)+L]=2[L+2] \\
& E(t)=\underbrace{E(0)}+(4+2 L) t=2 \int_{0}^{L} x^{2} d x+(4+2 L) t=\frac{L^{3}}{3}+(42 L) t \\
&
\end{aligned}
$$

(6) (a) $u(x, t)=3+\cos \frac{2 \pi x}{L} e^{-}$
(b) $\lim _{t \rightarrow \infty} u(x, t)=3$

$$
\frac{\partial^{2}\left(f_{1}+f_{1}\right)}{\partial t_{1}^{2}}=\frac{\partial^{2} f_{1}}{\partial t_{1}}+\frac{\partial^{2} f_{2}}{\partial t^{2}}
$$

$$
\begin{aligned}
& \text { (2) } L\left(c_{1} u_{1}+c_{2} u_{2}\right)=\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}\right)\left(c_{1} u_{1}+c_{2} u_{2}\right)=\frac{\partial^{2}\left(c_{1} u_{1}\right)}{\partial t^{2}}-c^{2} \frac{\partial^{2}\left(c_{1} u_{1}\right)}{\partial x^{2}}+ \\
& +\frac{\partial^{2}\left(c_{2} u_{2}\right)}{\partial t^{2}}-c^{2} \frac{\partial^{2}\left(c_{2} u_{2}\right)}{\partial x^{2}}=c_{1} \frac{\partial_{1}}{\partial t^{2}}+c_{1} c^{2} u_{1} \frac{u_{1}}{\partial x^{2}}+c_{2}^{2} \frac{u_{2}}{\partial t^{2}}-c_{2} c^{2} \frac{\partial^{2} u_{2}}{\partial x^{2}}= \\
& =c_{1}\left(\frac{\partial^{2} u_{1}}{\partial t^{2}}-c^{2} \frac{\partial^{2} u_{1}}{\partial x^{2}}\right)+c_{2}\left(\frac{\partial^{2}\left(q_{1} u_{1}\right.}{\partial t^{2}}=c_{1}^{\frac{\partial u_{1}}{\partial t^{2}}}-c^{2} \frac{\partial^{2} u_{2}}{\partial x^{2}}\right)=c_{1} L\left(u_{1}\right)+c_{2} L\left(u_{2}\right)
\end{aligned}
$$

