Quiz 2 (Sample)

1. (30 points) Determine the equilibrium temperature distribution for a onedimensional rod with constant thermal properties with the following sources and boundary conditions: $Q=x^{2}, u(0)=T, u_{x}(L)=0$.
2. Consider the problem:
$u_{t}=u_{x x}+x-\beta, \quad u(x, 0)=f(x), u_{x}(0, t)=0, u_{x}(L, t)=0$.
(a) (30 points) For what value of β is there an equilibrium solution?
(b) (30 points) For the value of β found in (a), calculate the equilibrium solution.
3. Suppose $u_{t}=3 u_{x x}+x, u(x, 0)=x, u_{x}(0, t)=1$, $u_{x}(L, t)=2$, where u denotes the temperature in a rod of length $L=1$, with specific hear $c=1$ and density $\rho=1$, and cross-sectional area $A=2$. Calculate the total thermal energy in the one-dimensional rod (as a function of time).
4. Is the differential operator $L(u)=u_{t}-2 x u_{x x}$ linear? Prove it.

NAME (please print): Answer Kay
Quiz 2 (Sample)

1. (30 points) Determine the equilibrium temperature distribution for a onedimensional rod with constant thermal properties with the following sources and boundary conditions $Q=x^{2}, u(0)=T, u_{f}(L)=0$.

$$
\begin{aligned}
& c \rho u_{1}=k_{0} u_{x x}+x^{2} \Rightarrow \text { EQUILBRRUM SOLA SATIRES: } k_{0} u_{x x}+x^{2}=0 \\
& \Rightarrow u_{x x}=-\frac{x^{2}}{k_{0}} \Rightarrow u_{x}(x)=-\frac{1}{k_{0}} \frac{x^{3}}{3}+c_{1} \Rightarrow u^{e}(x)=-\frac{1}{k_{0}} \frac{\frac{x^{4}}{12}+c_{1} x+c_{2}}{u(0)=T \Rightarrow u^{e}(0)=c_{2}=T \Rightarrow c_{2}=T} \\
& u_{x}(L)=0 \Rightarrow-\frac{1}{k_{0}} \frac{c^{3}}{3}+c_{1}=0 \Rightarrow c_{1}=\frac{1}{k_{0}} \frac{{ }^{3}}{3} \Rightarrow u^{e}(x)=-\frac{1}{k_{0}} \frac{x^{4}}{12}+\frac{1}{v_{0}} \frac{L^{3}}{3} x+T
\end{aligned}
$$

2. Consider the problem:

$$
u_{t}=u_{x s}+x-\beta, \quad u(x, 0)=f(x), u_{z}(0, t)=0, u_{x}(L, t)=0 .
$$

(a) (30 points) For what value of β is there an equilibrium solution?
(b) (30 points) For the value of β found in (a), calculate the equilibrium solution.
(a) Equilibrium: $u_{x x}+x-\beta=0 \Rightarrow u_{x x_{2}}=-x+\beta \Rightarrow u_{x}=-\frac{x^{2}}{2}+\beta x+c_{1} \Rightarrow$

$$
\Rightarrow u(x)=-\frac{x^{3}}{6}+\frac{L}{2} \frac{x^{2}}{2}+C_{2} \text { EQuLIBRNN ExisTs } 1=\beta=\frac{L}{2} \text {. }
$$

(b) E is conserved (show this!) $\Rightarrow E(t)=E(0) \Rightarrow \int_{0}^{2}\left(-\frac{x^{3}}{6}+\frac{L}{2} \frac{x^{2}}{2}+C_{2}\right) d x=\int_{0}^{L} f(x) d x$
 and density $\rho=1$, and cross-sectional area $A=2$. Calculate r (as a function of time).
energy in the ope-dimenssonal rod (a)

$$
\begin{aligned}
& E(t)=1 \cdot 1 \int_{0}^{1} u(x, t) \cdot 2 d x \Rightarrow \frac{d E(t)}{d t}=2 \int_{0}^{1} u_{t} d x=2 \int^{1}\left(3 u_{x x}+x\right) d x= \\
& \quad=6\left[u_{x}\right]_{0}^{1}+2 \cdot\left[\frac{x^{2}}{2}\right]_{0}^{1}=6[2-1]+1=7 \\
& \begin{aligned}
\frac{d E(t)}{d t}=7 & \Rightarrow E(t)=E(0)+7 t=\int_{0}^{1} A f(x) d x+7 t-2 \int_{0}^{i} x d x+7 t=1+7 t \\
& \Rightarrow t(t)=1+7 t
\end{aligned}
\end{aligned}
$$

4. Is the differential $\frac{E \text { perator } L(\mathrm{u})=\mathrm{u}_{1}-2 x u_{z}}{}$ linear? Prove it.

Yes. $L(u)=u_{z}-2 x u_{x x}$ is Linear. Proof: Show that

$$
L\left(c_{1} u_{1}+c_{2} u_{2}\right)=c_{1} L\left(u_{1}\right)+c_{2} L\left(u_{2}\right) .
$$

Indeed: $L\left(c_{1} u_{1}+c_{2} u_{2}\right)=\frac{\partial}{\partial t}\left(c_{1} u_{1}+c_{2} u_{2}\right)-2 \times \frac{\partial_{1}^{2}}{\partial x^{2}}+c_{2} \frac{\left.\partial u_{1} u_{1}+c_{2} u_{2}\right)=. \quad \text {. }}{\partial t}-$

$$
\begin{aligned}
& =c_{1} \frac{\partial u_{1}}{\partial t}+c_{2} \frac{\partial u_{1}}{\partial t}-2 x \cdot c_{1} \frac{\partial u_{1}}{\partial x^{2}}-2 x c_{2} \cdot \frac{\partial u_{2}}{\partial x^{2}}= \\
& =c_{1}\left\{\frac{\partial u_{1}}{\partial t}-2 x \frac{\partial^{2} u_{1}}{\partial x^{2}}\right\}+c_{2}\left\{\frac{\partial u_{2}}{\partial t}-2 x \frac{\partial^{2} u_{2}}{\partial x^{2}}\right\}=c_{1} L\left(u_{1}\right)+c_{2} L\left(u_{2}\right)
\end{aligned}
$$

