Quiz 3

1. What ordinary differential equations are implied by the method of separation of variables for the partial differential equation:

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}-\alpha \frac{\partial u}{\partial x}, k>0, \alpha>0 .
$$

2. Consider the differential equation

$$
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0
$$

Determine the eigenvalues λ and the corresponding eigenfunctions if ϕ satisfies the following boundary conditions:

$$
\phi(0)=0, \quad \phi(L)=0
$$

3. Consider the heat equation $u_{t}=u_{x x}$ defined for $x \in(0,1)$ and $t>0$, subject to the boundary conditions $u(0, t)=0$ and $u(1, t)=0$. Solve the initial boundary value problem if the temperature is initially

$$
u(x, 0)=\sin (4 \pi x) \cos (\pi x)
$$

Hint: Use the following trigonometric identity: $\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)]$ to express the initial data as the sum of two sine functions.

NAME (please print):
4. Consider $u_{t}=2 u_{x x}$, subject to $u(0, t)=0, u(L, t)=0$ and $u(x, 0)=\sin \frac{2 \pi x}{L}$.
(a) Find the solution $u(x, t)$.
(b) What is the total heat energy in the rod as a function of time?
(c) What is the flow of heat energy out of the rod at $x=0$? at $x=L$?

Quiz3 (Answer key)
(1) $u(x, t)=\phi(x) G(t) \Rightarrow \phi(x) G^{\prime}(t)=k \phi^{\prime \prime}(x) G(t)-\alpha \phi^{\prime}(x) G(t) / \div k \phi G$

$$
\begin{aligned}
& u(x, t)=\phi(x) G(t) \Rightarrow \frac{G^{\prime}(t)}{k G(t)}=\frac{\phi^{\prime}(x)}{\phi(x)}-\frac{\alpha}{k} \frac{\phi^{\prime}(x)}{\phi(x)}=-\lambda \Rightarrow
\end{aligned}
$$

$$
G^{\prime}(t)=-\lambda k G(t) \text { and } \quad \phi^{\prime \prime}(x)-\frac{\alpha}{k} \phi^{\prime}(x)+\lambda \phi(x)=0
$$

(2)

$$
G^{\prime}(t)=-\lambda k G(t) \quad \phi(x)=e^{r x} \Rightarrow r^{2} e^{x}+\lambda e^{r x}=0 \mid \div e^{i x}
$$

$$
\Rightarrow r^{2}+\lambda=0 \Rightarrow r= \pm \sqrt{-\lambda}
$$

$$
\begin{aligned}
& \Rightarrow r^{2}+\lambda=0 \Rightarrow r= \pm \sqrt{-\lambda} \\
& \Rightarrow \phi(x)=C_{1} e^{\sqrt{\lambda} x}+C_{2} e^{-\sqrt{\lambda} x}=D_{1} \cos \sqrt{\lambda} x+D_{2} \sin \sqrt{\lambda} x
\end{aligned}
$$

$$
\Rightarrow \phi(x)=c_{1}=D_{1}=0 \Rightarrow \phi(x)=D_{2} \sin \sqrt{\lambda} x
$$

$$
\begin{aligned}
& \phi(0)=0 \Rightarrow D_{1}=0 \Rightarrow \phi(x)=D_{2} \sin \sqrt{\lambda} x \\
& \phi(L)=0 \Rightarrow D_{2} \sin \sqrt{\lambda} k=0 \Rightarrow D_{2}=0 \Rightarrow \text { RIN IAL SOLUTION } \\
& >\sqrt{\lambda}=n \pi, n=1,2,3, \cdots
\end{aligned}
$$

$$
\begin{aligned}
& \phi(L)=0 \Rightarrow 1_{2} \sin \sqrt{\lambda} k=0 \Rightarrow \sqrt{\lambda}=n \pi, n=1,2 \\
& \Rightarrow \lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, n=1,2,3, \ldots \text { ELGENVALUES }
\end{aligned}
$$

$$
\frac{\lambda_{n}=\left(\frac{\sin \frac{n \pi x}{L}, n=1,2,3, \ldots \text { EIGEN FUNCTIONS }}{\phi_{n}\left(\frac{n \pi}{L}\right)^{2} t}\right.}{-e^{-(n \pi)^{2} t}}
$$

(3)

$$
\begin{aligned}
& u_{n}(x, t)=\sin \frac{n \pi x}{L} e^{-k\left(\frac{n \pi}{L}\right) t}=\sin (n \pi x) \cdot e^{c} \\
& u(x, 0)=\sin 4 \pi n \quad \cos \pi x=\frac{1}{2}[\sin 5 \pi x+\sin 3 \pi x]
\end{aligned}
$$

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} \sin n \pi x e^{-(n \pi)^{2} t} \Rightarrow u(x, 0)=\sum B_{n} \sin n \pi x
$$

4 (a) $u(x, t)=\sin \frac{2 \pi x}{L} e^{-2\left(\frac{2 \pi}{L}\right)^{2} t}$

$$
\begin{aligned}
& \text { (b) } \begin{aligned}
E(t) & =c \rho \int_{0}^{L} u(x, t) A d x=C \rho A \int_{0}^{L} \\
\sin \frac{2 \pi}{L} x & \left.e^{-2\left(\frac{2 \pi}{L}\right)^{2} t} d x=c \rho A e^{-2\left(\frac{2 \pi}{L}\right)^{2} t}\left[-\cos \frac{2 \pi x}{L}\right]_{0}^{L} \frac{L}{2 \pi}\right) \\
& =C \rho A e^{-2\left(\frac{2 \pi}{L}\right)^{2} t}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& -2\left(\frac{2 \pi}{2}\right)^{2} t \\
& \left\{\phi\left(L_{1} t\right)=-k_{0}\left(\frac{2 \pi}{L}\right) \cos \left(\frac{2 \pi}{L} \cdot L\right) e^{-2\left(\frac{2 \pi}{L}\right)^{t} t}=k_{0} \frac{2 \pi}{L} e^{-2\left(\frac{2 \pi}{L}\right)^{2} t}\right.
\end{aligned}
$$

