Quiz 5: Due March 21 (beginning of class)

1. (30 pts) Solve the following initial-boundary value problem:

$$
\begin{aligned}
u_{t t} & =4 u_{x x}, x \in(0,1), t>0 \\
u(0, t) & =0 \\
u(1, t) & =0 \\
u(x, 0) & =0 \\
u_{t}(x, 0) & =3 \sin 2 \pi x
\end{aligned}
$$

2. (40 pts) Solve the following initial boundary value problem for the damped string:

$$
\begin{aligned}
u_{t t} & =u_{x x}-u_{t}, x \in(0,1), t>0 \\
u(0, t) & =0 \\
u(1, t) & =0 \\
u(x, 0) & =\sin \pi x \\
u_{t}(x, 0) & =0
\end{aligned}
$$

Warning: Be very careful when dealing with the initial data $u_{t}(x, 0)=0$ for this problem with damping!
3. (30 pts) By using the following trigonometric formulas

$$
\sin \alpha \sin \beta=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)], \quad \sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha-\beta)-\sin (\alpha+\beta)]
$$

and the Fourier series expression for the general solution of the vibrations of a linearly elastic string fixed at the end points $x=0$ and $x=L$:

$$
u(x, t)=\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi c t}{L}+B_{n} \sin \frac{n \pi c t}{L}\right) \sin \frac{n \pi x}{L}
$$

show that the general solution $u(x, t)$ can be written as a sum of two functions $F(x-c t)$ and $G(x+c t)$ where $F(x-c t)$ describes a forward traveling wave moving with speed c, and $G(x+c t)$ describes a backward traveling wave moving with speed c.

