Quiz 5 Sample

1. Consider the problem for a linearly elastic string fixed at the end points:

$$
\begin{aligned}
u_{t t} & =c^{2} u_{x x}, x \in(0, L), t>0 \\
u(0, t) & =0 \\
u(L, t) & =0 \\
u(x, 0) & =f(x) \\
u_{t}(x, 0) & =g(x)
\end{aligned}
$$

Show the details in obtaining the solution of this initial-boundary value problem using the method of separation of variables.
2. Using what you found in problem 1, solve the following initial-boundary value problem:

$$
\begin{aligned}
u_{t t} & =4 u_{x x}, x \in(0,1), t>0 \\
u(0, t) & =0 \\
u(1, t) & =0 \\
u(x, 0) & =0 \\
u_{t}(x, 0) & =3 \sin 2 \pi
\end{aligned}
$$

3. Write and solve the ODEs that results from the initial boundary value problem for the damped string:

$$
\begin{aligned}
u_{t t} & =u_{x x}-u_{t}, x \in(0,1), t>0 \\
u(0, t) & =0 \\
u(1, t) & =0 \\
u(x, 0) & =f(x) \\
u_{t}(x, 0) & =0
\end{aligned}
$$

Write the "general" solution as a superposition of separated solutions $u_{n}(x, t)=\phi_{n}(x) h_{n}(t)$ that you just found.

WE DID NOT COVER PROBLEMS 4 and 5 IN CLASS. WILL DO AFTER SPRING BREAK.
4. True or false: Every solution of the wave equation can be written as a sum of a forward moving traveling wave and a backward moving traveling wave.
5. Show that $u(x, t)$ given by the D'Alambert formula below satisfies the wave equation $u_{t t}=c^{2} u_{x x}$:

$$
u(x, t)=\frac{1}{2}[f(x-c t)+f(x+c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s
$$

Hint: Use $\frac{d}{d x} \int_{f_{1}(x)}^{f_{2}(x)} g(s) d s=f_{2}^{\prime}(x) g\left(f_{2}(x)\right)-f_{1}^{\prime}(x) g\left(f_{1}(x)\right)$.
In fact, more generally, the following holds:

$$
\frac{d}{d x} \int_{f_{1}(x)}^{f_{2}(x)} g(s, x) d s=f_{2}^{\prime}(x) g\left(f_{2}(x)\right)-f_{1}^{\prime}(x) g\left(f_{1}(x)\right)+\int_{f_{1}(x)}^{f_{2}(x)} \frac{\partial g}{\partial x}(s, x) d s
$$

Auswer koy
Probleus $1-4 \rightarrow$ in class.

$$
\begin{align*}
& \text { (5) } \begin{aligned}
u(x, t) & =\frac{1}{2}[f(x-c t)+f(x+c t)]+\frac{1}{2 c} \int_{x-c t} g(s) d s \\
u_{y}(x, t) & =\frac{1}{2}\left[f^{\prime}(x-c t)(-c)+f^{\prime}(x+c t)(+c)\right]+ \\
& +\frac{1}{2 c}[c g(x+c t)-(-c) g(x-c t)] \\
u_{t t}(x, t) & =\frac{1}{2}\left[f^{\prime \prime}(x-c t)(-c)^{2}+f^{\prime \prime}(x+c t) c^{2}\right]+ \\
& +\frac{1}{2 c}\left[g^{\prime}(x+c t) \cdot c^{2}-c^{\prime 2} g^{\prime}(x-c t)\right] \\
u_{x}(x, t) & =\frac{1}{2}\left[f^{\prime}(x-c t)+f^{\prime}(x+c t)\right]+\frac{1}{2 c}[g(x+c t)-g(x-c t)] \\
u_{x x}(x, t)= & \frac{1}{2}\left[f^{\prime}(x-c t)+f^{\prime \prime}(x+c t)\right]+\frac{1}{2 c}\left[g^{\prime}(x+c t)-g^{\prime}(x-c t)\right] \\
c^{2} u_{x x}(x, t) & =\frac{c^{2}}{2}\left[f^{\prime \prime}(x-c t)+f^{\prime}(x+c t)\right]+\frac{c}{2}\left[g^{\prime}(x+c t)-g^{\prime}(x-c t)\right]
\end{aligned}
\end{align*}
$$

By comparing $(*) \&(* *)$ we see that

$$
u_{f t}=c^{2} u_{x x}
$$

for u given by D'Aleubert Formule.

