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SUMMARY

We present an operator-splitting scheme for fluid–structure interaction (FSI) problems in hemodynamics,
where the thickness of the structural wall is comparable to the radius of the cylindrical fluid domain. The
equations of linear elasticity are used to model the structure, while the Navier–Stokes equations for an
incompressible viscous fluid are used to model the fluid. The operator-splitting scheme, based on the Lie
splitting, separates the elastodynamics structure problem from a fluid problem in which structure inertia is
included to achieve unconditional stability. We prove energy estimates associated with unconditional sta-
bility of this modular scheme for the full nonlinear FSI problem defined on a moving domain, without
requiring any sub-iterations within time steps. Two numerical examples are presented, showing excellent
agreement with the results of monolithic schemes. First-order convergence in time is shown numerically.
Modularity, unconditional stability without temporal sub-iterations, and simple implementation are the fea-
tures that make this operator-splitting scheme particularly appealing for multi-physics problems involving
FSI. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluid–structure interaction (FSI) problems arise in many applications. They include multi-physics
problems in engineering such as aeroelasticity and propeller turbines, as well as biofluidic appli-
cation such as self-propulsion organisms, fluid–cell interactions, and the interaction between blood
flow and cardiovascular tissue. In biofluidic applications, such as the interaction between blood flow
and cardiovascular tissue, the density of the structure (arterial walls) is roughly equal to the density
of the fluid (blood). In such problems, the energy exchange between the fluid and the structure is
significant, leading to a highly nonlinear FSI coupling. A comprehensive study of these problems
remains to be a challenge because of their strong nonlinearity and multi-physics nature.

The development of numerical solvers for FSI problems has become particularly active since the
1980s [1–25].

Until recently, only monolithic algorithms seemed applicable to blood flow simulations [25–30].
These algorithms are based on solving the entire nonlinear coupled problem as one monolithic sys-
tem. They are, however, generally quite expensive in terms of computational time, programming
time, and memory requirements, as they require solving a sequence of strongly coupled problems
using, for example, the fixed point and Newton’s methods [13, 27, 31–34].
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The multi-physics nature of the blood flow problem strongly suggests to employ partitioned
(or staggered) numerical algorithms, where the coupled FSI problem is separated into a fluid sub-
problem and a structure sub-problem. The fluid and structure sub-problems are integrated in time
in an alternating way, and the coupling conditions are enforced asynchronously. When the density
of the structure is much larger than the density of the fluid, as is the case in aeroelasticity, it is
sufficient to solve, at every time step, just one fluid sub-problem and one structure sub-problem to
obtain a solution. The classical loosely coupled partitioned schemes of this kind typically use the
structure velocity in the fluid sub-problem as Dirichlet data for the fluid velocity (enforcing the
no-slip boundary condition at the fluid–structure interface), while in the structure sub-problem, the
structure is loaded by the fluid normal stress calculated in the fluid sub-problem. These Dirichlet–
Neumann loosely coupled partitioned schemes work well for problems in which the structure is
much heavier than the fluid. Unfortunately, when fluid and structure have comparable densities,
which is the case in the blood flow application, the simple strategy of separating the fluid from the
structure suffers from severe stability issues [35, 36]. This is because the energy of the discretized
problem in Dirichlet–Neumann loosely coupled schemes does not approximate well the energy of
the continuous problem. A partial solution to this problem is to sub-iterate several times between
the fluid and structure sub-solvers at every time step until the energy of the continuous problem
is well approximated. These strongly coupled partitioned schemes, however, are computationally
expensive and may suffer from convergence issues for certain parameter values [35].

To get around these difficulties, and to retain the main advantages of loosely coupled partitioned
schemes such as modularity, simple implementation, and low computational costs, several new
loosely coupled algorithms have been proposed recently. In general, they behave quite well for
FSI problems containing a thin fluid–structure interface with mass [17, 27, 32, 37–49].

For FSI problems in which the structure is ‘thick’, that is, the thickness of the structure is com-
parable to the transverse dimension of the fluid domain, partitioned, loosely coupled schemes are
more difficult to construct. In fact, to the best of our knowledge, there have been no loosely coupled,
partitioned schemes proposed so far in literature for a class of FSI problems in hemodynamics that
contain thick structure models to study the elastodynamics of arterial walls. The closest works in
this direction include a strongly coupled partition scheme by Badia et al. in [50] and an explicit
scheme by Burman and Fernández where certain ‘defect-correction’ sub-iterations are necessary to
achieve optimal accuracy [51].

More precisely, in [50], the authors construct a strongly coupled partitioned scheme based on cer-
tain Robin-type coupling conditions. In addition to the classical Dirichlet–Neumann and Neumann–
Dirichlet schemes, they also propose Robin–Neumann and Robin–Robin schemes that converge
without relaxation, and need a smaller number of sub-iteration between the fluid and the structure
in each time step than classical strongly coupled schemes.

In [51], Burman and Fernández proposed an explicit scheme where the coupling between the fluid
and a thick structure is enforced in a weak sense using Nitsche’s approach [52]. The formulation
in [51] still suffers from stability issues related to the added mass effect, which were corrected by
adding a weakly consistent penalty term that includes pressure variations at the interface. The added
term, however, lowers the temporal accuracy of the scheme, which was then corrected by proposing
a few defect-correction sub-iterations to achieve optimal accuracy.

In the work presented here, we take a different approach to separate the calculation of the fluid
and structure sub-problems in the case when the FSI problem incorporates a thick elastic structure.
Our approach is based on the Lie splitting, also known as the Marchuk–Yanenko scheme. This split-
ting is applied to the coupled FSI problem written in arbitrary Lagrangian–Eulerian (ALE) form.
Namely to deal with the motion of the fluid domain, in this manuscript, we utilize an ALE approach
[11–17]. Once the coupled problem is written in ALE form, the Lie splitting is applied. The coupled
FSI problem in ALE form is split into a fluid sub-problem and a structure sub-problem. The fluid
sub-problem includes structure inertia to avoid instabilities associated with the added mass effect
in partitioned schemes. This also avoids the need for any sub-iterations in each time step. A struc-
ture elastodynamics problem is then solved separately. We first introduced this approach in [40] to
deal with FSI problems containing thin structures, leading to a completely partitioned, loosely cou-
pled scheme called the kinematically coupled scheme. To increase the accuracy of the kinematically
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coupled scheme, in [38], we introduced a modification of this scheme, called the kinematically cou-
pled ˇ-scheme, which was based on including a ˇ-fraction of the pressure at the fluid–structure
interface into the structure sub-problem. Another novelty of [38] was the fact that this scheme was
applied to an FSI problem where the structure was modeled by the Koiter shell model accounting
for both radial and longitudinal displacements. Because of its simple implementation, modularity,
and good performance, modifications of this scheme have been used by several authors to study
FSI problems in hemodynamics including cardiovascular stents (Muha and Čanić (2013), unpub-
lished data), thin structures with longitudinal displacement [39], multi-layered structure of arterial
walls, Bukač et al. (2013), unpublished data [53], poroelastic arterial walls (Bukač et al. (2013),
unpublished data), or non-Newtonian fluids [54]. In the present paper, we extend the kinematically
coupled ˇ-scheme to FSI problems with thick structures.

This extension is not trivial because the resulting scheme, unlike those cited earlier, is not com-
pletely partitioned because in problems with thick structures, the fluid–structure interface does not
have a well-defined mass/inertia. More precisely, to achieve unconditional stability, our operator-
splitting strategy is based on including the fluid–structure interface inertia into the fluid sub-problem.
This can be easily performed when the fluid–structure interface has mass. In that case, the structure
inertia can be included in the fluid sub-problem through a Robin-type boundary condition at the
fluid–structure interface [38]. However, in problems in which the interface between the fluid and
structure is just a trace of a thick structure that is in contact with the fluid, as is the case in the
present manuscript, the inclusion of the structure inertia in the fluid sub-problem is problematic
if one wants to split the problem in the spirit of partitioned schemes. We address this issue by
defining a new ‘fluid sub-problem’, which involves solving a simplified coupled problem on both
the fluid domain and the structure domain, in a monolithic fashion. The inertia of the structure
is included in this fluid sub-problem not through a boundary condition for the fluid sub-problem
but by solving a simple, structure problem involving only structure inertia (and structural viscos-
ity if the structure is viscoelastic), coupled with the fluid problem via a simple continuity of stress
condition at the interface. Although solving this simplified coupled problem on both domains is
reminiscent of monolithic FSI schemes, the situation is, however, much simpler, as the hyper-
bolic effects associated with fast wave propagation in the structural elastodynamics problem are not
included here. As a result, we show in Section 5.2.2 that the condition number of this sub-problem
is smaller by several orders of magnitude than the condition number associated with monolithic
FSI schemes. In fact, the condition number of this sub-problem is of the same order of magni-
tude as the condition number of the pure fluid sub-problem. Furthermore, the time step in this
sub-problem can be taken larger than the time step in the classical monolithic schemes, which is
dictated by the fast traveling waves in the elastic structure. Using this approach, we achieved uncon-
ditional stability of this operator-splitting scheme that separates the fluid from the structure sub-
problems without a need for sub-iterations, but, as mentioned earlier, the drawback is the expense
of generating the computational mesh on both the fluid and structure domains to resolve the fluid
sub-problem.

In Section 4, we prove that for the fully nonlinear FSI problem defined on a moving domain, the
proposed scheme satisfies an energy estimate that is associated with unconditional stability of the
scheme, for all the parameters in the problem. To the best of our knowledge, this is the first result
in which an energy estimate indicating unconditional stability of a partition-like scheme is obtained
for a full nonlinear FSI problem.

In Section 5, we study two examples from literature involving FSI problems in hemodynamics
with thick structures. We showed that in both cases, our simulations compared well with the results
of monolithic schemes. Furthermore, in Section 5.2.1, we showed, on a numerical example, that our
scheme is first-order accurate in time.

Although the presentation and numerical examples in this manuscript are given in terms of 2D
problems, there is nothing in the operator-splitting scheme that depends on the dimension of the
problem. Therefore, the same ideas as those presented in this manuscript apply to problems in 3D.

We conclude by emphasizing that, as in partitioned schemes, our scheme is modular in the
sense that different modules can be easily added or replaced to study more complex multi-physics
problems, and no sub-iterations between the different modules are needed to achieve stability.
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Thus, we argue that the proposed operator-splitting scheme is closer in spirit to partitioned (loosely
coupled) schemes than to monolithic schemes, providing an appealing approach to solve coupled
FSI in hemodynamics with thick structures.

2. DESCRIPTION OF THE FLUID–STRUCTURE INTERACTION PROBLEM

We consider the flow of an incompressible, viscous fluid in a 2D channel of reference length L
and reference width 2R; see Figure 1. The lateral boundary of the channel is bounded by a thick,
deformable wall with finite thickness h, that is, the wall thickness h is not necessarily small with
respect to the channel radius R. We are interested in simulating a pressure-driven flow through a
deformable 2D channel, in which the fluid and structure are fully coupled via a set of coupling
conditions describing a two-way coupling. Without loss of generality, we consider only the upper
half of the fluid domain supplemented by a symmetry condition at the axis of symmetry. Thus, the
reference fluid and structure domains in our problem are given, respectively, by

O�f WD ¹.´, r/j0 < ´ < L, 0 < r < Rº,

O�s WD ¹.´, r/j0 < ´ < L,R < r < RC hº,

with O� denoting the Lagrangian boundary of O�s in contact with the fluid

O� D .0,L/.

Here, ´ and r denote the horizontal and vertical Cartesian coordinates, respectively (Figure 1).
Throughout the rest of the manuscript, we will be using the ‘hat’ notation to denote the Lagrangian
variables defined on the reference configuration.

The flow of an incompressible, viscous fluid is modeled by the Navier–Stokes equations:

�f

�
@v

@t
C v � rv

�
Dr � � in�f .t/ for t 2 .0,T /, (1)

r � vD 0 in�f .t/ for t 2 .0,T /, (2)

where v D .v´, vr/ is the fluid velocity, p is the fluid pressure, �f is the fluid density, and �
is the fluid Cauchy stress tensor. For a Newtonian fluid, the Cauchy stress tensor is given by
� D �pI C 2�fD.v/, where �f is the fluid viscosity and D.v/ D .rv C .rv/� /=2 is the
rate-of-strain tensor.

The fluid domain �f .t/ is not known a priori as it depends on the solution of the problem.
Namely the lateral boundary of �f .t/ is determined by the trace of the displacement of the thick
structure at the fluid–structure interface, as it will be shown later.

At the inlet and outlet boundaries of the fluid domain, denoted by �fin and �fout, respectively, we
prescribe the normal stress:

�n
f
in .0, r , t /D�pin.t/n

f
in on .0,R/� .0,T /, (3)

�n
f
out.L, r , t /D�pout.t/n

f
out on .0,R/� .0,T /, (4)

Figure 1. Left: reference domains O�f [ O�s . Right: deformed domains �f .t/[�s.t/.
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where nfin=n
f
out are the outward normals to the inlet/outlet fluid boundaries, respectively. Even

though not physiologically optimal, these boundary conditions are common in blood flow mod-
eling [55–57].

At the bottom fluid boundary r D 0, denoted by �b , the following symmetry conditions are
prescribed:

@v´

@r
.´, 0, t /D 0, vr.´, 0, t /D 0 on .0,L/� .0,T /. (5)

The lateral fluid boundary is bounded by a deformable, 2D, elastic/viscoelastic wall with finite
thickness, modeled by the following elastodynamics equations:

�s
@2 OU

@t2
C � OU Dr �S

�
OU
�
C ��

@ OU

@t
in O�s for t 2 .0,T /, (6)

where OU . Ó , Or , t / D
�
OU´. Ó , Or , t /, OUr . Ó , Or , t /

�
is the structure displacement, �s is the structure den-

sity, and � is the constant modeling viscoelastic structural effects. In the work described here, � can
be taken to be zero, thereby accounting for a possibility of modeling strictly elastic structures. The
term � OU (i.e., the linearly elastic spring term) comes from 3D axial symmetry, accounting for the
recoil due to circumferential strain, keeping the top and bottom structure displacements connected
in 2D; see, for example, [47, 58, 59]. Tensor S is the first Piola–Kirchhoff stress tensor given by

S
�
OU
�
D 2�sD

�
OU
�
C 	s

�
r � OU

�
I , where �s and 	s are the Lamé constants. The structure is

described in the Lagrangian framework, defined on a fixed, reference domain O�s . In contrast, the
fluid problem, written in the Eulerian framework, is defined on a domain �f .t/, which depends
on time.

We assume that the structure is fixed at the inlet and outlet portions of the boundary:

OU .0, Or , t /D OU .L, Or , t /D 0, for Or 2 ŒR,RC h
, t 2 .0,T /. (7)

At the external structure boundary O�sext, we assume that the structure is exposed to a certain external
ambient pressure Pext, while the axial displacement remains fixed:

nsext � Sn
s
ext D�Pext, on O�sext � .0,T /, (8)

OU´ D 0, on O�sext � .0,T /, (9)

where nsext is the outward unit normal vector on O�sext.
Initially, the fluid and the structure are assumed to be at rest, with zero displacement from the

reference configuration

vD 0, OU D 0,
@ OU

@t
D 0. (10)

The fluid and structure are coupled via the kinematic and dynamic boundary conditions [60,61]:

� Kinematic coupling condition describes continuity of velocity

v
�
Ó C OU´ . Ó ,R, t / ,RC OUr . Ó ,R, t / , t

�
D
@ OU

@t
. Ó ,R, t / on .0,L/� .0,T /. (11)

� Dynamic coupling condition describes balance of contact forces:

J
b

�nf

ˇ̌̌̌
ˇ O� CSnsj O� C � @

@ns

 
@ OU

@t

!ˇ̌̌̌
ˇ
O�

D 0 on .0,L/� .0,T /, (12)

where J denotes the Jacobian of the transformation from the Eulerian to Lagrangian frame-

work, J D
p
.1C @�´=@´/2C .@�r=@´/2, and b�nf denotes the normal fluid stress defined on

O�f D .0,L/� .0,R/ (here nf is the outward unit normal to the deformed fluid domain), and
ns is the outward unit normal to the structural domain.
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Figure 2. At maps the reference domain O�f into the current domain �f .t/.

2.1. The ALE framework

To deal with the motion of the fluid domain, we adopt the ALE approach [11, 12, 57]. In the con-
text of finite element method approximation of moving-boundary problems, the ALE method deals
efficiently with the deformation of the mesh, especially near the interface between the fluid and
the structure, and with the issues related to the approximation of the time derivatives @v=@t ��
v
�
tnC1

�
� v.tn/

�
=�t , which because�f .t/ depends on time, is not well defined because the val-

ues v
�
tnC1

�
and v.tn/ correspond to the values of v defined at two different domains. The ALE

approach is based on introducing a family of (arbitrary, invertible, smooth) mappings At defined on
a single, fixed, reference domain O�f such that, for each t 2 .t0,T /, At maps the reference domain
O�f D .0,L/� .0,R/ into the current domain �f .t/ (Figure 2):

At W O�f �R2!�f .t/�R2, x DAt . Ox/ 2�f .t/, for Ox 2 O�f .

In our approach, we define At to be a harmonic extension of the structure displacement OU at the
fluid–structure interface onto the whole domain O�f , for a given t W

�At D 0 in O�f ,

At j O� D OU j O� ,

At j@ O�f n O� D 0.

To rewrite system (1)–(2) in the ALE framework, we notice that for a function f D f .x, t /
defined on �f .t/ � .0,T /, the corresponding function Of WD f ı At defined on O� � .0,T / is
given by

Of . Ox, t /D f .At . Ox/ , t / .

Differentiation with respect to time, after using the chain rule, gives

@f

@t

ˇ̌̌̌
Ox D

@f

@t
Cw � rf , (13)

where w denotes domain velocity given by

w.x, t /D
@At . Ox/
@t

. (14)

Finally, system (1)–(2) in ALE framework reads as follows: find v D .v´, vr/ and p, with
Ov. Ox, t /D v.At . Ox/, t / such that

�f

�
@v

@t

ˇ̌̌̌
Ox

C .v�w/ � rv

�
Dr � � , in�f .t/� .0,T /, (15)

r � vD 0 in�f .t/� .0,T /, (16)

with corresponding initial and boundary conditions.
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We will apply the Lie splitting on this system written in ALE form. Before we do that, we intro-
duce the notion of weak solutions to the coupled FSI problem. For this purpose, we utilize the ALE
mapping, introduced earlier, and define the function spaces on moving domains in terms of the
ALE-mapped functions, defined on the fixed, reference domain.

2.2. Weak solution of the coupled FSI problem

Define the following test function spaces

V f .t/D

²
' W�f .t/!R2j 'D O' ı .At /�1, O' 2

�
H 1

�
O�f
��2

,'r jrD0 D 0,

³
, (17)

Q.t/D
°
q W�f .t/!Rj q D Oq ı .At /�1 , Oq 2 L2

�
O�f
�±

, (18)

OV s D

²
O W O�s!R2j O 2

�
H 1

�
O�s
��2

, O j´D0,L D 0, O ´j O�sext
D 0

³
, (19)

for all t 2 Œ0,T / and introduce the following function space:

V fsi.t/D
°�
', O 

�
2 V f .t/� OV sj 'j�.t/ D O j O� ı

�
A�1t j�.t/

�±
. (20)

The variational formulation of the coupled FSI problem now reads: For t 2 .0,T /, find .v, OU ,p/ 2
V f .t/ � OV s �Q.t/ such that vD OU t ı A�1t on �.t/, and the following holds for all .', O , q/ 2
V fsi.t/�Q.t/:

�f

²Z
�f .t/

@v

@t
�'dxC

Z
�f .t/

.v � r/v �'dx

³
C 2�f

Z
�f .t/

D.v/ WD.'/dx

�

Z
�f .t/

pr �'dxC �s

Z
O�s

@2 OU

@t2
� O dxC 2�s

Z
O�s
D. OU / WD. O /dx

C	s

Z
O�s

�
r � OU

� �
r � O 

�
dxC �

Z
O�s

OU � O dxC �

Z
O�s
r
@ OU

@t
W r O dx

C

Z
O�sext

Pext

�
O � nsext

�
dS D

Z R

0

pin.t/'´j´D0dr �

Z R

0

pout.t/'´j´DLdr ,

with Z
�f .t/

qr � vdx D 0.

3. THE NUMERICAL SCHEME

3.1. An operator-splitting approach

To solve the FSI problem written in ALE form (15)–(16), and with the initial and boundary con-
ditions (3)–(12), we propose an operator-splitting scheme, which is based on the Lie operator
splitting [62], also known as Marchuk–Yanenko splitting. The splitting is introduced to separate
the different physics in the problem represented by the fluid and structure sub-problems. To achieve
unconditional stability of such an approach, it is crucial to include inertia of the fluid–structure inter-
face in the fluid sub-problem, thereby avoiding the ‘added mass effect’ responsible for instabilities
of classical Dirichlet–Neumann partitioned schemes [35]. This can be easily performed when the

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2013)
DOI: 10.1002/fld



M. BUKAČ ET AL.

fluid–structure interface has mass, for example, the interface is modeled as a thin structure satisfy-
ing the Koiter shell equations, as was performed in [38, 40]. In that case, the structure inertia can
be included in the fluid sub-problem through a Robin-type boundary condition at the fluid–structure
interface [38]. However, in problems in which the interface between the fluid and structure is just
a trace of a thick structure that is in contact with the fluid, as is the case in the present manuscript,
the inclusion of structure inertia in the fluid sub-problem is problematic if one wants to split the
problem in the spirit of partitioned schemes. We address this issue by defining a new fluid sub-
problem, which involves solving a simplified coupled problem on both the fluid domain and the
structure domain. The fluid sub-problem is solved coupled with structure inertia (and with the vis-
cosity of the structure if the structure is viscoelastic) in a monolithic way, leaving out the elastic part
of the structure. Although solving this simplified coupled problem on both domains is reminiscent
of monolithic FSI schemes, the situation is, however, much simpler, because the hyperbolic effects
associated with fast wave propagation in the structural elastodynamics problem are not included
here. As a result, we show later in Section 5.2.2 that the condition number of this sub-problem is
smaller by several orders of magnitude than the condition number associated with monolithic FSI
schemes. In fact, the condition number of this sub-problem is of the same order of magnitude as the
condition number of a pure fluid sub-problem! This approach also allows the choice of larger time
steps, not restricted by the time scale associated with fast wave propagation in the elastic structure.

3.1.1. Lie splitting and the first-order system. The Lie operator splitting is defined for evolutionary
problems, which can be written as a first-order system in time:

@�

@t
CA.�/D 0, in .0,T /, (21)

�.0/D �0, (22)

where A is an operator from a Hilbert space into itself, and A can be split, in a non-trivial
decomposition, as

AD

IX
iD1

Ai . (23)

The Lie scheme consists of the following. Let �t > 0 be a time discretization step. Denote
tn D n�t , and let �n be an approximation of �.tn/. Set �0 D �0. Then for n > 0, compute
�nC1 by solving

@�i

@t
CAi .�i /D 0 in

�
tn, tnC1

�
, (24)

�i .t
n/D �nC.i�1/=I , (25)

and then set �nCi=I D �i
�
tnC1

�
, for i D 1, : : : , I . This method is first-order accurate in time.

More precisely, if (21) is defined on a finite-dimensional space, and if the operators Ai are smooth
enough, then k�.tn/� �nk DO.�t/ [62].

To apply the Lie operator-splitting scheme, we must rewrite system (1)–(12) in first-order form.

For this purpose, we introduce the structure velocity OV D @ OU
@t

and rewrite the problem as follows:

find vD .v´, vr/, p, OU D
�
OU´, OUr

�
and OV D

�
OV´, OVr

�
, with Ov . Ox, t /D v .At . Ox/ , t / , such that

�f

�
@v

@t

ˇ̌̌̌
Ox

C .v�w/ � rv

�
Dr � � , in�f .t/� .0,T /, (26)

r � vD 0, in�f .t/� .0,T /, (27)
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�s
@ OV

@t
C � OU Dr �S

�
OU
�
C �� OV , in O�s � .0,T /, (28)

@ OU

@t
D OV , in O�s � .0,T /, (29)

with the coupling conditions at the fluid–structure interface

OV j O� D Ovj O� , (30)

J
b

�nf j O� CSn
sj O� C �

@ OV

@ns

ˇ̌̌̌
ˇ
O�

D 0, (31)

(where Ovj O� denotes v
�
Ó C OU´ . Ó ,R, t / ,RC OUr . Ó ,R, t / , t

�
; and b�nf j O� denotes the normal fluid

stress defined on the reference fluid domain O�f ), and with boundary conditions

@v´

@r
.´, 0, t /D vr.´, 0, t /D 0 on �f

b
, (32)

v.0,R, t /D v.L,R, t /D 0, OU j ÓD0,L D 0, (33)

�n
f
in .0, r , t /D�pin.t/n

f
in , (34)

�n
f
out.L, r , t /D�pout.t/n

f
out on .0,R/� .0,T /. (35)

nsext �Sn
s
ext D�Pext on O�sext � .0,T /, (36)

OU´ D 0 on O�sext � .0,T /. (37)

At time t D 0, the following initial conditions are prescribed:

vjtD0 D 0, OU jtD0 D 0, OV jtD0 D 0. (38)

Using the Lie operator-splitting approach, problem (26)–(38) is split into a sum of the following
sub-problems:

A1. An elastodynamics sub-problem for the structure.
A2. A fluid sub-problem, coupled with structure inertia (and the viscous part of the structure

equation if � ¤ 0).

We will be numerically implementing this splitting by further splitting the fluid sub-problem into
a dissipative part and a non-dissipative part. Namely we will be using the Lie splitting to sepa-
rate the time-dependent Stokes problem from a pure advection problem. This way, one can use
non-dissipative solvers for non-dissipative problems, thereby achieving higher accuracy. This is par-
ticularly relevant if one is interested in solving advection-dominated problems, such as transport of
nano-particles by blood. However, this additional splitting is not necessary to achieve stability of the
scheme, as we show in Section 4, where only problems A1 and A2 will be used to show an energy
estimate associated with unconditional stability of the scheme. However, for completeness, we show
in the next section the implementation of our numerical scheme in which the fluid sub-problem is
further split into two, leading to the following Lie splitting of the coupled FSI problem:

A1. An elastodynamics sub-problem for the structure.
A2(a). A time-dependent Stokes problem for the fluid.
A2(b). A fluid and ALE advection problem.
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3.1.2. Details of the operator-splitting scheme. Before we define each of the sub-problems
mentioned earlier, we split the fluid stress c�n into two parts, parts I and II:

c�nDc�nC ˇcpn„ ƒ‚ …
.I /

�ˇcpn„ƒ‚…
.II/

,

where ˇ is a number between 0 and 1, 0 6 ˇ 6 1. Different values of ˇ effect the accuracy of the
scheme [38], but not stability (Čanić et al. (2013), unpublished data). For the problem discussed in
the current manuscript, our experimental observations indicate that ˇ D 1 provides the kinematically
coupled ˇ-scheme with highest accuracy.

In addition to the splitting of the fluid stress, we also separate different physical effects in the
structure problem. We split the viscoelastic effects from the purely elastic effects and treat the struc-
tural viscoelasticity together with the fluid, while treating the pure elastodynamics of the structure
in a separate, hyperbolic, structural sub-problem. Details of the splitting are as follows:

Problem A1: A pure elastodynamics problem is solved on O�s with a boundary condition on O�
involving part II of the normal fluid stress. Thus, the structure elastodynamics is driven by the
initial velocity of the structure (given by the fluid velocity at the fluid–structure interface from

the previous time step) and by the fluid pressure loading ˇJ 1.pnf / acting on the fluid–structure
interface (obtained from the previous time step). The problem reads: find v, OU , and OV , with pn

and J n obtained at the previous time step, such that8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

@v

@t

ˇ̌̌
Ox D 0, in�f .tn/�

�
tn, tnC1

�
,

�s
@ OV

@t
C � OU Dr �S

�
OU
�

,
@ OU

@t
.´, t /D OV , in O�s �

�
tn, tnC1

�
,

�J nˇ
�
1pnnf

�
j O� CSn

sj O� D 0, on O� �
�
tn, tnC1

�
,

with boundary conditions

OU j´D0,L D 0,

OU´ D 0, nsext � Sn
s
ext D�Pext on O�sext �

�
tn, tnC1

�
,

and initial conditions

v.tn/D vn, OU .tn/D OU
n
, OV .tn/D OV

n
.

Then set vnC1=3 D v.tnC1/, OU
nC1=3

D OU
�
tnC1

�
, OOV nC1=3 D OV

�
tnC1

�
.

A new ALE velocity wnC1 is calculated based on the current and previous locations of the fluid
domain: wnC1 D @At=@t

�
�
�
AnC1t �Ant

�
=�t

�
.

Problem A2(a). A time-dependent Stokes problem is solved on the fixed fluid domain �f .tn/,
coupled with the viscous part of the structure problem defined on O�s . (For higher accuracy,
�f .tn/ can be replaced with �f .tnC1/.) The coupling is performed via the kinematic coupling
condition and a portion of the dynamic coupling condition involving only part I of the fluid stress.
When � D 0 (the purely elastic case), the problem on O�s consists of only setting the structural
velocity OV equal to the structural velocity from the previous time step, as @ OV =@t D 0 in this
sub-problem. The problem reads as follows: Find v,p, OV , and OU , with Ov . Ox, t / D v .At . Ox/ , t /,
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such that for t 2
�
tn, tnC1

�
, with pn and J n obtained in the previous time step, the following

holds: 8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

�f
@v

@t

ˇ̌̌
Ox Dr � � , r � vD 0, in�f .tn/�

�
tn, tnC1

�
,

�s
@ OV

@t
D �� OV ,

@ OU

@t
. Ó , t /D 0, in O�s �

�
tn, tnC1

�
,

J nC1 b�nf j O� C J
nˇ
�
1pnnf

�
j O� C �

@ OV

@ns

ˇ̌
O�
D 0, on O� �

�
tn, tnC1

�
,

OV j O� D Ovj O� , on O� �
�
tn, tnC1

�
,

with the following boundary conditions on �fin [ �
f
out [ �

f

b
:

@v´

@r
.´, 0, t /D vr.´, 0, t /D 0 on �f

b
,

v.0,R, t /D v.L,R, t /D 0,

�n
f
in D�pin.t/n

f
in on �fin , �n

f
out D�pout.t/n

f
out on �fout,

and initial conditions

v.tn/D vnC1=3, OU .tn/D OU
nC1=3

, OV .tn/D OV
nC1=3

.

Then set vnC2=3 D v.tnC1/, OU
nC2=3

D OU .tnC1/, OV
nC2=3

D OV .tnC1/, pnC1 D p.tnC1/.

Problem A2(b): A fluid and ALE advection problem is solved on a fixed fluid domain �f .tn/
with the ALE velocity wnC1 calculated in problem A1. (For higher accuracy, �.tn/ can be
replaced by �.tnC1/.) The problem reads as follows: find v, OU , and OV with Ov . Ox, t / D
v .At . Ox/ , t /, such that for t 2

�
tn, tnC1

�
,8̂̂̂<̂

ˆ̂:
@v

@t

ˇ̌̌
Ox C

�
vnC2=3 �wnC1

�
� rvD 0, in�f .tn/�

�
tn, tnC1

�
,

@ OV

@t
. Ó , t /D 0,

@ OU

@t
. Ó , t /D 0, in O�s �

�
tn, tnC1

�
,

with boundary conditions

vD vnC2=3 on �nC2=3� , where

�nC2=3� D
°
x 2R2jx 2 @�f .tn/,

�
vnC2=3 �wnC1

�
� nf < 0

±
,

and initial conditions

v.tn/D vnC2=3, OU .tn/D OU
nC2=3

, OV .tn/D OV
nC2=3

.

Then set vnC1 D v.tnC1/, OU
nC1
D OU .tnC1/, OV

nC1
D OV .tnC1/.

Do tn D tnC1 and return to problem A1.

Remark 1
The method proposed earlier works well even if the fluid and structure steps are performed in
reverse order.
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3.2. Discretized sub-problems

In this section, we discretize each problem in space and time, and describe our solution strategy. To
discretize the sub-problems in time, we sub-divide the time interval .0,T / into N sub-intervals of
width �t . For the space discretization, we use the finite element method. Thus, for tn D n�t , 0 6
n 6 N , we define the finite element spaces V f

h
.tn/ � V f .tn/,Qf

h
.tn/ � Qf .tn/,V fsi

h
.tn/ �

V fsi.tn/ and OV s
h
� OV s . To write the weak formulation, the following notation for the corresponding

bilinear forms will be used:

af

�
v,'f

�
WD 2�f

Z
�f .tn/

D.v/ WD
�
'f
�
dx, (39)

bf

�
pf ,'f

�
WD

Z
�f .tn/

pf r �'
f dx, (40)

av

�
OV , O'v

�
WD �

Z
O�s
r OV W r O'vdx, (41)

ae

�
OU , O's

�
WD 2�s

Z
O�s
D. OU / WD

�
O's
�
dxC 	s

Z
O�s

�
r � OU

� �
r � O's

�
dx

C �

Z
O�s

OU � O'sdx.
(42)

Problem A1: To discretize problem A1 in time, we used the second-order Newmark scheme.

The weak formulation of the fully discrete problem is given as follows: find OU
nC1=3

h 2 OV s
h

and

OV
nC1=3

h 2 OV s
h

such that for all
�
O'sh,�sh

�
2 OV s

h
� OV s

h
, with pn

h
obtained at the previous time step:

�s

Z
O�s

OV
nC1=3

h � OV
n

h

�t
� O'shdxC ae

0@ OU nhC OU nC1=3h

2
, O'sh

1AD J nˇ Z
O�

1

pnhn
f � O'shdx,

�s

Z
O�s

0@ OV nhC OV nC1=3h

2
�
OU
nC1=3

h � OU
n

h

�t

1A ��shdx D 0.

Problem A2(a): We discretize problem A2(a) in time using the backward Euler
method. The weak formulation of the fully discrete problem is given as follows: find�
v
nC2=3

h
, OV

nC2=3

h ,pnC2=3
h

�
2 V

fsi
h
.tn/ � Q

f

h
.tn/ such that for all

�
'
f

h
, O'vh, f

h

�
2 V

fsi
h
.tn/ �

Q
f

h
.tn/:

�f

Z
�f .tn/

v
nC2=3

h
� v

nC1=3

h

�t
�'
f

h
dxC af

�
v
nC2=3

h
,'f
h

�
� bf

�
p
nC2=3

h
,'f
h

�
C bf

�
 
f

h
, vnC2=3
h

�
C �s

Z
O�s

OV
nC2=3

h � OV
nC1=3

h

�t
� O'vhdxC av

�
OV
nC2=3

h , O'vh
�
D

Z R

0

pin
�
tnC1

�
'
f

x,hjxD0dy

�

Z R

0

pout
�
tnC1

�
'
f

x,hjxDLdy � J
nˇ

Z
�.tn/

pnhn
f �'

f

h
dx.

Then set pnC1
h
D p

nC2=3

h
.

Problem A2(b): We discretize problem A2(b) in time using again the backward Euler method. To
solve the resulting advection problem, we use a positivity-preserving ALE finite element scheme,
which preserves conservation of mass at the discrete level. Details of the scheme are presented
in [63].
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4. ENERGY ESTIMATE ASSOCIATED WITH UNCONDITIONAL STABILITY OF THE
SCHEME FOR ˇ D 0

We will show that the proposed operator-splitting scheme satisfies an energy estimate, which is
associated with unconditional stability of the scheme for all the parameters in the problem when
ˇ D 0. This will be performed for the basic splitting algorithm, mentioned in Section 3.1.1, where
the splitting consists of solving two sub-problems:

A1. An elastodynamics sub-problem for the structure.
A2. A fluid sub-problem, coupled with structure inertia (and the viscous part of the structure

equation if � ¤ 0).

We will use energy estimates to show that the energy of the discretized problem mimics the energy
of the continuous problem. More precisely, we will show that the total energy of the discretized
problem plus viscous dissipation of the discretized problem is bounded by the discrete energy of
the initial data and the work performed by the inlet and outlet dynamic pressure data. In contrast
with similar results appearing in literature [35,37,43,51], which consider simplified models without
fluid advection, and linearized fluid–structure coupling calculated at a fixed fluid domain boundary,
in this manuscript, we derive the corresponding energy estimate for a full, nonlinear FSI problem,
which includes fluid advection, and the coupling is achieved at the moving fluid–structure interface.

To simplify the analysis, the following assumptions that do not influence stability of the scheme
will be considered:

1. Only radial displacement of the fluid–structure interface is allowed, that is, OU jrDR � Oe´ D 0

at the fluid–structure interface. The FSI problem with this boundary condition is well defined.
This assumption does not affect stability of the scheme related to the added mass effect. In
fact, the same assumption was considered in the original work on added mass effect by Causin
et al. [35]. In the present manuscript, this simplifies the form of the energy estimates in the
proof.

2. The problem is driven by the dynamic inlet and outlet pressure data, and the flow enters and
leaves the fluid domain parallel to the horizontal axis:

pC
�f

2
jvj2 D pin/out.t/, vr D 0, on �in/out.

We consider ˇ D 0 here because, in this case, it is easier to prove the related energy estimates. Our
numerical results presented in [38] indicate that only accuracy, not stability, is affected by chang-
ing ˇ between 0 and 1. Using energy estimates to prove unconditional stability of the scheme with
ˇ ¤ 0 would be significantly more difficult. We mention a related work, however, in which uncon-
ditional stability of the kinematically coupled ˇ-scheme for ˇ 2 Œ0, 1
 was proved for a simplified,
linearized FSI problem with a thin structure, using different techniques from those presented here
(Čanić et al. (2013), unpublished data). In the present paper, for the first time, we derive an energy
estimate associated with unconditional stability of the full, nonlinear FSI problem, defined on a
moving domain, with nonlinear fluid–structure coupling. The same proof applies to problems where
the thick structure is replaced by a thin structure. In that case, the kinematically coupled ˇ-scheme
is a fully partitioned scheme [38, 40].

We begin by first deriving an energy equality of the continuous, coupled FSI problem.

4.1. The energy of the continuous coupled problem

To formally derive an energy equality of the coupled FSI problem, we multiply the structure
equations by the structure velocity, the balance of momentum in the fluid equations by the fluid
velocity, and integrate by parts over the respective domains using the incompressibility condition.
The dynamic and kinematic coupling conditions are then used to couple the fluid and structure
sub-problems. The resulting equation represents the total energy of the problem.
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The following identities are used in this calculation:Z
�f .t/

@v

@t
vdx D

1

2

d

dt

Z
�f .t/

jvj2dx �
1

2

Z
�.t/

jvj2v � nf dS , (43)

Z
�f .t/

.v � r/v � vdx D
1

2

Z
@�f .t/

jvj2v � nf dS . (44)

The first is just the transport theorem. The second one is obtained using integration by parts.
The boundary integral associated with the convective term (44) is simplified as follows. The

portion corresponding to �b is zero because of the symmetry boundary condition, which implies
v � nD 0 on �b . The portion corresponding to �.t/ is canceled with the same term appearing in the
transport formula (43). Finally, the boundary terms on �in/out are absorbed by the dynamic pressure
boundary conditions. The fluid sub-problem implies the following:

1

2

d

dt

°
�f jjvjj

2
L2.�f .t//

±
C 2�f jjD.v/jj

2
L2.�.t//

�

Z R

0

pin.t/v´j´D0dr C

Z R

0

pout.t/v´j´DLdr D

Z
�.t/

�nf � v dS .

The integral on the right-hand side can be written in Lagrangian coordinates asZ
�.t/

�nf � v dS D

Z
O�

b

�nf � Ov J d Ó , (45)

where J is the Jacobian of the transformation from the Eulerian to Lagrangian coordinates. We use
the kinematic and dynamic lateral boundary conditions (11)–(12) to obtainZ

O�

b

�nf � Ov J d Ó D �

Z
O�

"
Sns �

@ OU

@t
� �

@

@ns

 
@ OU

@t

!
�
@ OU

@t

#ˇ̌̌̌
ˇ
O�

d Ó . (46)

After adding the energy equalities associated with the fluid problem and the thick structure prob-
lem, and after using the coupling expressed in (46), one obtains the following energy equality of the
coupled FSI problem:

d

dt

8̂̂̂̂
<̂̂
ˆ̂̂̂:
�f

2
jjvjj2

L2.�f .t//
C
�s

2

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ@ OU@t

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
2

L2. O�s/„ ƒ‚ …
Fluid and Structure Kinetic Energy

C
�

2
jj OU jj2

L2. O�s/
C�sjjD. OU /jj

2

L2. O�s/
C
	s

2
jjr � OU jj2

L2. O�s/„ ƒ‚ …
Structure Elastic Energy

9>>=>>;
C 2�f jjD.v/jj

2
L2.�f .t//„ ƒ‚ …

Fluid Viscous Energy

C �

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇr @ OU@t

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
2

L2. O�s/„ ƒ‚ …
Structure Viscous Energy

D

Z R

0

pin.t/v´j´D0dr �

Z R

0

pout.t/v´j´DLdr �

Z
O�sext

Pext
@ OUr

@t
dS .

(47)

To obtain energy estimates for the proposed operator-splitting scheme, we first write the main
steps of the splitting scheme in weak form. For this purpose, we start by writing the weak form of
the problem written in ALE formulation, with dynamics pressure inlet and outlet data, and then split
the weak ALE form, following the operator-splitting approach presented in the previous section.
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4.2. The weak form of the continuous coupled problem in ALE form

We consider the ALE form of the fluid equations (15)–(16), coupled with the initial and boundary
conditions (3)–(12), where the inlet and outlet conditions for the fluid problem are the dynamic
pressure data. As we shall see later, it is convenient to write the fluid and ALE advection term in

symmetric form, giving rise to the following weak formulation: for t 2 .0,T /, find
�
v, OU ,p

�
2

V f .t/� OV s �Q.t/ such that vD OU t ıA�1t on �.t/, and the following holds:

�f

Z
�f .t/

@v

@t

ˇ̌̌̌
Ox �'dxC

�f

2

Z
�f .t/

...v�w/ � r/v �'� ..v�w/ � r/' � v/ dx

C
�f

2

Z
�f .t/

.r �w/ v �'dxC 2�f

Z
�f .t/

D.v/ WD.'/dx

�

Z
�f .t/

pr �'dxC �s

Z
O�s

@2 OU

@t2
� O dxC 2�s

Z
O�s
D. OU / WD. O /dx

C 	s

Z
O�s

�
r � OU

� �
r � O 

�
dxC �

Z
O�s

OU � O dxC �

Z
O�s
r
@ OU

@t
W r O dx

C

Z
O�sext

Pext

�
O � nsext

�
dS D

Z R

0

pin.t/'´j´D0dr �

Z R

0

pout.t/'´j´DLdr ,

(48)

and Z
�f .t/

qr � vdx D 0,

for all
�
', O , q

�
2 V fsi.t/�Q.t/, where V fsi.t/ and Q.t/ are defined by (17)–(20).

This weak formulation is consistent with the problem. Indeed, integration by parts of one half of
the convective term gives

1

2

Z
�f .t/

..v�w/ � r/v �'D�
1

2

Z
�f .t/

..v�w/ � r/' � vC
1

2

Z
�f .t/

.r �w/v �'

C
1

2

Z
@�f .t/

..v�w/ � n/v �'.

Here, we have used the fact that r � v D 0. The last term in this expression, that is, the boundary
integral, can be evaluated as follows: on �.t/, we recall that v D w and so that part is zero; on �b ,
we have v � nD w � nD 0, and so this contribution is zero as well; finally, on �in/out, we have wD 0,
and the remaining quadratic velocity term is exactly the quadratic velocity contribution in dynamic
pressure. Therefore, the weak form (48) is consistent with problems (15)–(16) and (3)–(12) in ALE
form, with dynamic inlet and outlet pressure data.

4.3. The time discretization via operator splitting in weak form

We perform the time discretization via operator splitting, described in Section 3.1.2, and write each
of the split sub-problems in weak form. To simplify the energy estimate proof, we keep the entire
fluid sub-problem together, without splitting the advection problem from the time-dependent Stokes
problem. The main features of the scheme, which are related to how the fluid and structure problems
are separated, are left intact in the stability analysis. Therefore, we split the coupled FSI problem
into the following:

A1. An elastodynamics sub-problem for the structure.
A2. A fluid sub-problem, coupled with structure inertia (and the viscous part of the structure

equation if � ¤ 0).

We discretize the problem in time as described in Section 3.2. As our stability analysis does not
depend on the spatial discretization, we leave the spatial operators in continuous form. To write the
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weak forms of the structure and fluid sub-problems, we use the bilinear forms defined in (39)–(42).
A weak formulation of our semi-discrete operator-splitting numerical scheme is given as follows:

Problem A1. (The structure sub-problem) Find OU
nC1=2

2 OV s and OV
nC1=2

2 OV s such that for
all
�
O's ,�s

�
2 OV s � OV s and t 2

�
tn, tnC1

�
W

�s

Z
O�s

OV
nC1=2

� OV
n

�t
� O'sdxC ae

0@ OU nC OU nC1=2
2

, O's

1A D 0,

�s

Z
O�s

0@ OV nC OV nC1=2
2

�
OU
nC1=2

� OU
n

�t

1A ��sdx D 0.

(49)

In this step, @v=@t D 0, so vnC1=2 D vn.

Problem A2. (The fluid sub-problem) Find
�
vnC1, OV

nC1
,pnC1

�
2 V fsi.t/ �Qf .t/ such that

for all
�
'f , O'v , f

�
2 V fsi.t/�Qf .t/ and t 2

�
tn, tnC1

�
:

�f

Z
�f .tn/

vnC1 � vnC1=2

�t
�'f dxC

�f

2

Z
�f .tn/

�
r �wnC

1
2

�
vnC1'f

C
�f

2

Z
�f .tn/

��
vn �wnC1=2

�
� r
�
vnC1 � 'f �

��
vn �wnC1=2

�
� r
�
'f � vnC1n

�
C af

�
vnC1,'f

�
� bf

�
pnC1,'f

�
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(50)

bf

�
 f , vnC1

�
D 0.

In this step, @ OU =@t D 0, so OU
nC1
D OU

nC1=2
.

Notice that in problem A2, we have taken the ALE velocitywnC1=2 from the just-calculated prob-
lem A1, and not from the previous time step. As in problem A2, the fluid domain does not change,
wnC1=2 DwnC1. This is important in proving energy estimates that are associated with the stability
of the splitting scheme for the full, nonlinear FSI problem defined on the moving domain. Namely
as we shall see later, by using this ALE velocity, we will be able to approximate the total discrete
energy at tnC1, which includes the kinetic energy due to the motion of the fluid domain at tnC1,
described by wnC1.

4.4. Energy estimate associated with unconditional stability of the splitting scheme

Let En
f

denote the discrete energy associated with (50), and let Ens denote the discrete energy
associated with (49) at time level n�t :

Enf WD
�f

2
jjvnjj2

L2.�f .tn//
, (51)
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The following energy estimate holds for the full nonlinear FSI problem, satisfying the aforemen-
tioned assumptions 1 and 2.

Theorem 1 (Energy estimate of the operator-splitting scheme)

Let
°�
vn, OV

n
, OU

n
±
06n6N

be a solution of (49)–(50). Then at any time level Qn�t , where 06 Qn6N ,

the following energy estimate holds:
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(53)

The first line in the energy estimate corresponds to the kinetic energy of the fluid and the total
energy of the structure, while the second line describes viscous dissipation in the fluid and the struc-
ture. They are estimated by the initial kinetic energy of the fluid, by the total initial energy of the
structure, and by the work performed by the inlet and outlet pressure data.

Proof
To prove the energy estimate, we test the structure problem (49) with

�
O's , O�

s
�
D

0@ OU nC1=2 � OU n
�t

,
OV
nC1=2

� OV
n

�t

1A ,

and problem (50) with �
'f , O'v , f

�
D
�
vnC1, OV

nC1
,pnC1

�
.

As we have assumed that the fluid–structure interface deforms only in the radial direction, that
is, OU jrDR D OU jrDR Oer , we can explicitly calculate the ALE mapping at every step and, more
importantly, calculate the associated ALE velocity w. For this purpose, we denote by � the radial
displacement of the fluid–structure interface, namely

O� WD OU j OrDR Oer , and O�n WD OU . Ó , tn/ j OrDR Oer .

We consider the following simple ALE mapping:

Atn W O�
f !�f .tn/, Atn . Ó , Or/ WD

�
Ó ,
RC O�n

R
Or

��
.

We will also need the explicit form of the ALE mapping from the computational domain �f .tn/ to
�f .tnC1/, which is given by

AtnC1 ıA
�1
tn W�

f .tn/!�f
�
tnC1

�
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�1
tn .´, r/D

�
´,
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��
.

The corresponding Jacobian and the ALE velocity are given by

J nC1n WD
RC O�nC1

RC O�n
, wnC1 D

1

�t

O�nC1 � O�n

RC O�n
r Oer . (54)

In problem A1 where we just calculated the updated location of the structure, O�n determines the
‘reference domain’, and O�nC1=2, which is the same as O�nC1, determines the location of the
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new domain. Therefore, the time derivative of the interface displacement is approximated by�
O�nC1 � O�n

�
=�t , which enters the expression for the ALE velocity wnC1. Again, notice that

wnC1=2 DwnC1.
We begin by considering the fluid sub-problem and the advection terms involving the fluid and

ALE advection. After replacing the test functions by the fluid velocity at time nC 1, we first notice
that the symmetrized advection terms cancel out. What is left are the terms

�f

Z
�f .tn/
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�t
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2
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To deal with the term on the left, we use the following identity:
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�
. (55)

To deal with the term on the right-hand side, we use the expression for wnC1=2, given by (54),
where we recall that wnC1=2 DwnC1, as in the second step, the structure location does not change.
We obtain
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Now notice that
�
RC O�nC1

�
= .RC O�n/ is exactly the Jacobian of the ALE mapping from �f .tn/

to�f .tnC1/; see (54); and so we can convert that integral into an integral over�f
�
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�
to recover

the kinetic energy of the fluid at the next time step:
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This calculation effectively shows that the kinetic energy of the fluid at the next time step accounts
for the kinetic energy of the fluid at the previous time step, plus the kinetic energy due to the motion
of the fluid domain. Therefore, even at the discrete level, we see that the energy of the discretized
problem mimics well the energy of the continuous problem.

Notice that this calculation also shows that the ALE mapping and its Jacobian satisfy the geo-
metric conservation law; see [64] for more details. A similar result was shown in [65] for the ALE
mapping, which is the harmonic extension of the boundary to the entire domain.

To deal with the structure sub-problem, we do not have the same problem associated with mov-
ing domains, as the structure problem is defined in Lagrangian coordinates, namely on a fixed
domain O�s . We use formula (55) to calculate the kinetic energy of the structure at the next time
step, in terms of the kinetic energy of the structure at the previous time step, plus a quadratic term

jj OV
nC1
� OV

nC1=2
jj2
L2

�
O�s
� that accounts for the kinetic energy due to the difference in the velocities

of the structure between the two time steps.
Finally, we add the corresponding energy equalities for the fluid and structure sub-problems.

We obtain
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To bound the right-hand side of this equality, we use the Cauchy–Schwartz and Young’s inequalities,
to obtain
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From the trace and Korn inequalities, we have
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where C is the constant from the trace and Korn inequalities. In general, Korn’s constant depends
on the domain. It was shown, however, that for domains associated with FSI problems of the type
studied in this manuscript, the Korn’s constant is independent of the sequence of approximating
domains [53, 66].

By setting �1 D
�f

C
, the last term can be combined with the term on the left-hand side, associated

with fluid diffusion. Therefore, so far, we have shown that the following inequality holds:
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To obtain an energy estimate for an arbitrary time level Qn�t , where 1 6 Qn 6 N , in terms of the
energy of the initial data, and the work performed by the inlet and outlet dynamic pressure data,
we sum the preceding inequalities for n D 1, : : : , Qn, cancel the corresponding kinetic energy terms
appearing on both sides, and obtain the energy estimate (53). �

5. NUMERICAL RESULTS

We consider two test problems. The first was considered in [51] to test performance of a partitioned
scheme based on Nitsche’s method, with a time penalty term needed for stabilization. The problem
involves solving a time-dependent Stokes problem coupled with the equations of linear elasticity,
where the coupling is assumed at a fixed fluid domain boundary (linear coupling). The second prob-
lem we consider was proposed in [67] and used in [68] as a benchmark problem for FSI with thick
elastic walls to test performance of monolithic FSI schemes. In this problem, the full FSI problem
(26)–(38) is solved, and the coupling is evaluated at the moving fluid–structure interface (nonlinear
coupling). In both examples, the flow is driven by the time-dependent pressure data. To resemble the
regime in which instabilities may occur, the fluid and structure densities are taken to be comparable.

We used our operator-splitting scheme with ˇ D 1 to simulate solutions to the two problems. Our
numerical investigations indicate that an increase in ˇ 2 Œ0, 1
 increases the accuracy of the scheme.
A similar experience was also reported in [38] for an FSI problem involving a thin elastic structure.
This is why all the simulations presented here correspond to ˇ D 1.

The value of the viscous parameter � was taken to be zero in both examples. Taking � > 0 regu-
larizes solutions of the FSI problem. Therefore, � D 0 is the most difficult case to consider, as the
structure problem in that case is hyperbolic, exhibiting wave phenomena in the structure at disparate
time scales from the fluid.
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Table I. Parameter values for Example 1.

Parameters Values Parameters Values

Radius R (cm) 0.5 Length L (cm) 5

Fluid density �f (g/cm3) 1.1 Dyn. viscosity � (poise) 0.035
Wall density �s (g/cm3) 1.2 Wall thickness h (cm) 0.1
Lamé coeff. �s (dyne/cm2) 5.75� 105 Lamé coeff. 	s (dyne/cm2) 1.7� 106

Spring coeff. � (dyne/cm4) 0 Viscoel. coeff. � (dyne s/cm2) 0

In both examples, the results obtained using the proposed operator-splitting scheme are compared
with solutions obtained using a monolithic scheme, showing excellent agreement. In the second
example, which considers the full FSI problem (26)–(38), we additionally show that our numerical
results indicate first-order accuracy in time of the proposed numerical scheme. Finally, we show
that the condition number of the fluid sub-problem (problem A2) in the proposed operator-splitting
scheme is by several orders of magnitude smaller than the condition number of monolithic schemes
because no wave phenomena associated with structural elastodynamics are solved in problem A2 of
the scheme.

5.1. Example 1

We consider a simplified FSI problem in which the fluid is modeled by the time-dependent Stokes
problem and the structure by the equations of linear elasticity. The fluid–structure coupling is lin-
ear in the sense that the fluid domain does not change in time. The flow is driven by the inlet
time-dependent pressure data, which are a step function in time:

pin.t/D

²
104 dyne/cm2 if t 6 0.005
0 if t > 0.005

, pout.t/D 0 8t 2 .0,T /.

The outlet normal stress is kept at zero.
The values of the parameters that determine the fluid and structure geometry, as well as their

physical properties, are given in Table I
This problem was suggested in [51] as a test problem to study performance of an explicit scheme

for FSI problems, which was based on Nitsche’s method. To deal with the instabilities associated
with the added mass effect in [51], a weakly consistent stabilization term was added that corresponds
to the pressure variations at the interface. This decreased the temporal accuracy of the scheme, which
was then corrected by adding certain defect-correction sub-iterations. In [51], this stabilized explicit
scheme was solved using the Taylor–Hood (P2=P1) finite elements for the fluid and P1 elements for
the structure. The size of the computational mesh was hv D 0.1. Their simulations were compared
with the solution obtained using a monolithic scheme. The time step for the monolithic scheme was
�t D 10�4, while the time step used in the stabilized explicit scheme based on Nitsche’s method
was �t D 10�5.

In our simulations, we discretize the problem in space by using a finite element approach with
an isoparametric version of the Bercovier–Pironneau element spaces, also known as the P1-iso-P2
approximation. In this approach, a coarse mesh is used for the pressure (mesh size hp) and a fine
mesh for velocity (mesh size hv D hp=2). To solve the structure problem, we used P1 elements on
a conforming mesh. To capture all the physically relevant phenomena, in this example, we chose
the space discretization step to be hv D 1p

Re
D 0.032, where Re is the Reynolds number associated

with this problem. To achieve comparable accuracy to the scheme proposed in [51], we only needed
to take the time step �t D 10�4, which was the time step used in [51] for the monolithic solver but
not for the stabilized explicit scheme proposed there.

A comparison between the results of the stabilized explicit scheme proposed in [51], the mono-
lithic scheme used in [51], and our operator-splitting scheme is shown in Figure 3. In this figure, the
displacement of the fluid–structure interface at the mid-point of the spatial domain was calculated.
Excellent agreement was achieved between our method and the corresponding monolithic method,
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Figure 3. Mid-point vertical displacement computed using a monolithic scheme (blue sold line) with
�t D 10�4, a stabilized explicit scheme proposed by Burman and Fernandez [51] with �t D 10�5

(red dashed line), and the operator-splitting scheme with ˇ D 1 and �t D 10�4 (black solid line).

Figure 4. The inlet pressure pulse for Example 2. The outlet normal stress is kept at 0.

Table II. Parameter values for Example 2.

Parameters Values Parameters Values

Radius R (cm) 0.5 Length L (cm) 6

Fluid density �f (g/cm3) 1 Dyn. viscosity � (g/cm s) 0.035
Wall density �s (g/cm3) 1.1 Wall thickness h (cm) 0.1
Lamé coeff. �s (dyne/cm2) 5.75� 105 Lamé coeff. 	s (dyne/cm2) 1.7� 106

Spring coeff. � (dyne/cm4) 4� 106 Viscoel. coeff. � (dyne s/cm2) 0

where the time step we used was the same as the time step used in the monolithic solver. In contrast
with the stabilized explicit scheme proposed in [51], the operator-splitting scheme proposed in this
manuscript does not require stabilization, providing results of this problem that compare well with
the results of the monolithic scheme using the same time step as in the monolithic solver.

5.2. Example 2

We consider the fully nonlinear FSI problem (26)–(38) with the fluid–structure coupling evaluated
at the moving interface (nonlinear coupling). The flow is driven by the inlet time-dependent pressure
data, which is a cosine pulse lasting for tmax D 0.003 s, while the outlet normal stress is kept at zero:

pin.t/D

´
pmax
2

h
1� cos

�
2�t
tmax

�i
if t 6 tmax

0 if t > tmax

, pout.t/D 0 8t 2 .0,T /,

where pmax D 1.333� 104 (dyne/cm2) and tmax D 0.003 (s). See Figure 4.
This problem was proposed in [67] and used in [68] as a benchmark problem for FSI problems in

hemodynamics, involving thick elastic walls.
The domain geometry and the values of all the fluid and structure parameters in this example are

given in Table II.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2013)
DOI: 10.1002/fld



M. BUKAČ ET AL.

Problem (26)–(38) was solved over the time interval Œ0, 0.012
 s. This is the time it takes the
pressure pulse generated at the inlet to travel across the entire fluid domain and reach the outlet.

We solved this problem using the following five different time steps: �t D 10�4, 5� 10�5, 10�5,
5� 10�6, and 10�6. These time steps were used to numerically show that the method is convergent
and that its accuracy in time is first order.

As before, to discretize the problem in space, we used the Bercovier–Pironneau element spaces,
also known as the P1-iso-P2 approximation, with the velocity mesh of size hv D 0.01 and the pres-
sure mesh of size hp D 2hv D 0.02. To solve the structure problem, the P1 elements were used on
a conforming mesh.

Figures 5 and 6 show 2D plots of the fluid pressure and structure displacement, respectively. The
pressure wave, shown in Figure 5, travels from left to right, displacing the thick structure. The col-
ors of the thick structure displacement in Figure 5 denote the magnitude of the radial component of
displacement. Figure 6 shows separate snapshots of the longitudinal and radial components of the

Figure 5. A snapshot of the pressure wave traveling from left to right coupled with the radial component
of the structure displacement. The legend shows the values for the pressure (top scale) and displacement

(bottom scale) over the same color scale.

Figure 6. The longitudinal (top) and radial (bottom) components of the structure displacement. Notice how
red and blue in longitudinal displacement denote longitudinal stretching of the structure in opposite (C=�)

directions.
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Figure 7. Flow rate versus ´, at t D 4, 8, 12 ms, computed with the monolithic scheme by Quaini [67] (time
step�t D 10�4; dashed line) and with our operator-splitting scheme with ˇ D 1 (time step�t D 5�10�5;

solid line).
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Figure 8. Mean pressure versus ´, at t D 4, 8, 12 ms, computed with the monolithic scheme by Quaini [67]
(time step �t D 10�4; dashed line) and with our operator-splitting scheme with ˇ D 1 (time step

�t D 5� 10�5; solid line).

displacement. Notice how red and blue in longitudinal displacement denote longitudinal stretching
of the structure in opposite directions.

The numerical results obtained using the operator-splitting scheme proposed in this manuscript
were compared with the numerical results obtained using the monolithic scheme proposed
in [67, 68]. The monolithic scheme was solved on the same mesh using stabilized P1–P1 elements
for the fluid problem and P1 elements for the structure problem.

Figures 7–9 show the calculated flow rate, mean pressure, and fluid–structure interface displace-
ment, respectively, as functions of the horizontal axis ´, for three different snapshots. The three
figures show a comparison between our operator-splitting scheme, shown in solid line, and the
monolithic scheme of [67, 68], shown in dashed line. In these figures, the time step used in the
monolithic scheme was �t D 10�4. To obtain roughly the same accuracy, we used the time step
�t=2D 5� 10�5. Figures 7–9 show a good comparison between the two solutions.

5.2.1. Convergence in time. In this example, we also study convergence in time of our operator-
splitting scheme. For this purpose, we define the reference solution to be the one obtained with
�t D 10�6. We calculated the relative L2-errors for the velocity, pressure, and displacement,
between the reference solution and the solutions obtained using �t D 10�4, 5 � 10�5, 10�5, and
5 � 10�6. Figure 10 shows the log–log plot of the relative errors, superimposed over a line with
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Figure 9. Fluid–structure interface displacement versus ´, at t D 4, 8, 12 ms, computed with the monolithic
scheme by Quaini [67] (time step �t D 10�4; dashed line) and with our operator-splitting scheme with

ˇ D 1 (time step �t D 5� 10�5; solid line).

Figure 10. Example 1: figures show relative errors obtained at t D 10 ms. Top left: relative error for fluid
velocity. Top right: relative error for fluid pressure. Bottom: relative error for the structure displacement.

slope 1, corresponding to first-order accuracy. The slopes indicate that our scheme is first-order
accurate in time. Indeed, Table III shows the precise numbers from Figure 10, calculated at time
t D 10 ms, indicating first order in time convergence for the velocity, pressure, and displacement.

5.2.2. The condition number of the fluid sub-problem in problem A2. We recall that in problem A2
of this operator-splitting scheme, a fluid sub-problem is solved in such a way to include the structure
inertia into the fluid sub-problem. This was performed for stability reasons, that is, to avoid issues
related to the added mass effect, associated with classical Dirichlet–Neumann partitioned schemes
for FSI in hemodynamics. As mentioned earlier, for FSI problems containing a thin fluid–structure
interface with mass, including the fluid–structure interface inertia into the fluid sub-problem can
be easily accomplished via a Robin-type boundary condition for the fluid sub-problem, leading to a
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Table III. Convergence in time calculated at t D 10 ms.

�t
jjp�pref jjL2
jjpref jjL2

L2 order
jju�uref jjL2
jjuref jjL2

L2 order
jjU�U ref jjL2
jjU ref jjL2

L2 order

10�4 0.69 — 0.92 — 0.72 —
5� 10�5 0.51 0.43 0.60 0.60 0.51 0.5
10�5 0.15 0.76 0.15 0.85 0.14 0.8
5� 10�6 0.07 1.06 0.07 1.1 0.06 1.1

fully partitioned scheme [38,53]. In our problem, however, the fluid–structure interface is just a trace
of the thick structure in contact with the fluid. In this case, the trace of the fluid–structure interface
does not have a well-defined inertia, and we need to include the inertia of the entire thick struc-
ture into the fluid sub-problem. As we saw earlier, this is performed by solving a fluid sub-problem
together with a simple problem for the structure that takes only the structure inertia into account
(and possibly the viscous effects of the structure if � ¤ 0). Thus, in problem A2, we solve a simpli-
fied coupled problem consisting of a fluid sub-problem, and a structure sub-problem involving only
structure inertia, coupled through a simple continuity of stresses condition. Even though this is rem-
iniscent of monolithic schemes, we show here that the condition number of this fluid sub-problem
is by several orders of magnitude smaller than the condition number of the monolithic scheme by
Quaini [67, 68]. Indeed, we calculated the condition number 
 of the stiffness matrix in problem
A2 of our operator-splitting scheme and obtained that 
split D 1.08 � 104. Similarly, we calculated
the related condition number for the stiffness matrix of the monolithic scheme by Quaini [67, 68]
and obtained that it equals 
mono D 7.82 � 108. This is directly related to the fact that in problem
A2 of our scheme, no structural elastodynamics problem was solved that would capture the wave
phenomena in the structure traveling at disparate time scales from the pressure wave in the fluid.

Therefore, although the problem in problem A2 is solved on both fluid and structure domains, its
condition number is equivalent to that of pure fluid solvers. Thus, the proposed operator-splitting
scheme consists of a fluid module and a structure module, which can be easily replaced if different
structure models or different solvers are to be used; see, for example, [54]. Furthermore, for more
general multi-physics problems, additional modules can be easily added to capture different physics
in the problem, as was performed in (Bukač et al. (2013), unpublished data) to study FSI with
multi-layered structures, in (Bukač et al. (2013), unpublished data) to study FSI with multi-layered
poroelastic walls, or in (Muha and Čanić (2013), unpublished data) to include a model of a stent in
the underlying FSI problem. Modularity, unconditional stability, and simple implementation are the
features that make this operator-splitting scheme particularly appealing for multi-physics problems
involving FSI.

6. CONCLUSIONS

This work proposes a modular scheme for FSI problems with thick structures. The proposed scheme
is based on the Lie operator-splitting approach, which separates the fluid from the structure sub-
problem, and on using an ALE approach to deal with the motion of the fluid domain. To achieve
unconditional stability without sub-iterations in each time step, the fluid sub-problem includes struc-
ture inertia, which requires solving the fluid sub-problem on both domains, that is, the fluid and
structure domains. While this is reminiscent of monolithic schemes, the condition number of the
fluid sub-step is significantly smaller than the condition number associated with classical FSI mono-
lithic schemes. This is because the wave propagation in the elastic structure is treated separately
in the structure sub-problem and not together with the fluid problem, as in classical monolithic
schemes. The advantage of this approach over classical monolithic schemes is the possibility to use
larger time steps, the separation of dissipative versus non-dissipative features of the coupled problem
allowing the use of non-dissipative solvers to treat wave propagation in the structure, and modu-
larity, which allows simple extensions of the scheme to capture different multi-physics problems
associated with FSI. A disadvantage of this scheme over classical partitioned schemes is that the
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M. BUKAČ ET AL.

fluid sub-step requires solving the associated problem on both the fluid and structure domains in
a monolithic fashion. However, unlike the classical Dirichlet–Neumann partitioned schemes, the
proposed scheme is unconditionally stable for all the parameters in the problem. This was shown in
the present manuscript by proving an energy estimate associated with unconditional stability of the
scheme, for the full, nonlinear FSI problem.
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Research Article

A modular, operator-splitting scheme for fluid–structure interaction problems with
thick structures

M. Bukač, S. Čanić, R. Glowinski, B. Muha and A. Quaini

A novel stable, modular, operator-splitting scheme is presented for the simulation of fluid-structure
interaction (FSI) problems in which the structure has finite thickness, comparable to the transverse
dimension of the fluid domain. The fluid flow is modeled by the Navier-Stokes equations for an
incompressible, viscous fluid, while the structure elastodynamics is governed by the equations
of linear elasticity/viscoelasticity. Energy estimates associated with unconditional stability of the
scheme are shown for the full, nonlinear FSI problem. Numerical examples show that this modular
scheme compares well with monolithic schemes.




