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In the last post, we introduced basic properties of convex cones and the
Hilbert metric. In this post, we look at how these tools can be used to ob-
tain an explicit estimate on the rate of convergence in the Perron–Frobenius
theorem.

1 Perron–Frobenius theorem

We start by stating a version of the Perron–Frobenius theorem. Let A be a
d × d stochastic matrix, where here we use this to mean that the entries of
A are non-negative, and every column sums to 1: Aij ∈ [0, 1] for all i, j, and∑d

i=1Aij = 1 for all j. Thus the columns of A are probability vectors.
Such a matrix A describes a weighted random walk on d sites: if the

walker is presently at site j, then Aij gives the probability that he will move
to site i at the next step. Thus if we interpret a probability vector v as giving
the probability of the walker being at site j with probability vj, then v 7→ Av
gives the evolution of this probability under one step of the random walk.

Now one version of the Perron–Frobenius theorem is as follows: If A is
a stochastic matrix with A > 0 (that is, Aij > 0 for all i, j), then there is
exactly one probability vector π that is an eigenvector for A. Moreover, the
eigenvalue associated to this eigenvector is 1, the eigenvalue 1 is simple, and
all other eigenvalues have modulus < 1. In particular, given any v ∈ [0,∞)2

we have Anv → π exponentially quickly.
The eigenvector π is the stationary distribution for the random walk

(Markov chain) given by A, and the convergence result states that any initial

1

http://vaughnclimenhaga.wordpress.com/2013/03/30/convex-cones-and-the-hilbert-metric/


distribution converges to the stationary distribution under iteration of the
process.

The assumption that A > 0 is quite strong: for the random walk, this
says that the walker can get from any site to any other site in a single step.
A more general condition is that A is primitive: that is, there exists N ∈ N
such that AN > 0. This says that there is a time N such that by taking N
steps, the walker can get from any site to any other site. The same result as
above holds in this case too.

In fact, the result holds in the even more general case when A is irre-
ducible: for every i, j there exists N such that (AN)ij > 0. This says that
the walker can get from every site to every other site, but removes the as-
sumption that there is a single time N that works for all site. For example,
consider a random walk on a chessboard, where the walker is allowed to move
one square horizontally or vertically at each step. Then for a sufficiently large
even value of N , the walker can get from any white square to any other white
square, but to get to a black square requires an odd value of N .

2 Rate of decay using convex cones

As stated above, the Perron–Frobenius theorem does not give any result on
the rate with which Anv converges to π. One way to give an estimate on this
rate is to use convex cones and the Hilbert metric, which were discussed in
the last post.

2.1 A cone and a metric

Let C be the convex cone [0,∞)d ⊂ Rd. We want an estimate on the diameter
of A(C) in the Hilbert metric dC. Recall that this metric is given by dC(v, w) =
log(β/α), where

β = inf{µ > 0 | µv − w ∈ C},
α = sup{λ > 0 | w − λv ∈ C}.

Another way of interpreting the cone C is in terms of the partial order it
places on V , which is given by v � w ⇔ w− v ∈ C ∪ {0}. We see that β and
α can be characterised as

α = sup{λ | λw � v}, β = inf{µ | v � µw}.
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In our present example, we see that the cone C = [0,∞)d induces the partial
order v � w ⇔ vi ≤ wi ∀i. Thus

α = sup{λ | λwi ≤ vi ∀i} = min
1≤i≤d

vi

wi

, (1)

and similarly β = max1≤i≤d
vi

wi
.

2.2 Diameter of A(C)
Now we need to determine the diameter ∆ of A(C) in the Hilbert metric dC.
If ∆ < ∞, then the theorem of Birkhoff from the previous post will imply
that dC contracts distances by a factor of tanh(∆/4) < 1.

Let ei be the standard basis vectors in Rd. Because dC is projective we
can compute ∆ by considering dC(Av,Aw) where

∑
vi =

∑
wj = 1. Using

the triangle inequality, we have

dC(Av,Aw) = dC

(
A
∑

viei, A
∑

wjej

)
= dC

(∑
vi(Aei),

∑
wj(Aej)

)
≤
∑
i,j

viwjdC(Aei, Aej) ≤ max
i,j

dC(Aei, Aej),

so it suffices to consider dC(Aei, Aej) for 1 ≤ i, j ≤ d. But Aei is just the
ith column of the matrix A, so writing A = [v1 · · · vn], where vi is the ith
column vector, we see that

∆ ≤ max
i,j

dC(v
i, vj). (2)

2.3 Contraction under multiplication by A

Now we have a very concrete procedure for estimating the amount of con-
traction in the dC metric under multiplication by A:

1. estimate ∆ using (2) and the expression for dC in (1) and the discussion
preceding it;

2. get a contraction rate of tanh(∆/4) < 1.

From (1) and the discussion preceding it, the distance dC(v
i, vj) is given as

dC(v
i, vj) = log β − logα = log

(
max
1≤k≤d

vi
k

vj
k

· max
1≤k≤d

vj
k

vi
k

)
. (3)
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Let Λ = tanh(∆/4). To write an explicit estimate for Λ, we use

Λ =
e∆/4 − e−∆/4

e∆/4 + e−∆/4
=

1− e−∆/2

1 + e−∆/2
≤ 1− s

1 + s
, (4)

where s < 1 is any estimate we can obtain satisfying e−∆/2 ≥ s. From (3)
and (2), we have

e−∆/2 ≥ max
i,j

√√√√min
k

(
vi

k

vj
k

)
min

k

(
vj

k

vi
k

)
=: s. (5)

This allows us to obtain estimates on dC(A
nv,Anw). However, we want to

estimate d(Anv, Anw) in a more familiar metric, such as one coming from a
norm. We can relate the two by observing that if v, w ∈ (0, 1]d, then

dC(v, w) = log max
k

(
vk

wk

)
+ log max

k

(
wk

vk

)
≥ max

k
| log vk − logwk| ≥ max

k
|vk − wk| = ‖v − w‖L∞ ,

where the last inequality uses the fact that log has derivative ≥ 1 on (0, 1].
Since A maps the unit simplex to itself (because A is stochastic), we see that

‖Anv − Anw‖L∞ ≤ dC(A
nv,Anw) ≤ CΛn, (6)

where Λ is given by (4) and (5), and where we can take either C = dC(v, w)
or C = ∆/Λ (since dC(Av,Aw) ≤ ∆), whichever gives the better bound.
Since all norms on Rd are equivalent, we have a similar bound in any norm.

3 Nonnegative matrices

The analysis in the previous section required A to be positive (Aij > 0 for all
i, j). A more general condition is that A is nonnegative and primitive: that
is, Aij ≥ 0 for all i, j, and moreover there exists N such that AN > 0.

If Aij = 0 for some i, j, then it is easy to see from the calculations in the
previous section that A(C) has infinite diameter in the Hilbert metric, so the
above arguments do not apply directly. However, they do apply to AN when
AN > 0, and so we fix N for which this is true, and we obtain Λ < 1 such
that dC(A

Nv,ANw) ≤ ΛdC(v, w) for all v, w ∈ C.
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Moreover, let L ∈ R be such that ‖Ar‖ ≤ L for all 0 ≤ r < N . Then for
any n ∈ N we can write An = AkN+r for some 0 ≤ r < N , so that

‖Anv − Anw‖ = ‖Ar(AkNv − AkNw)‖ ≤ LCΛk,

where C is as in (6). Thus we conclude that asymptotically, Anv approaches
the eigenvector with contraction rate Λ1/N .

To see this in action, consider a Markov chain with transition matrix

A =

(
1
2

1
1
2

0

)
.

That is, from the first state the walker transitions to either state with prob-
ability 1/2, while from the second state the walker always returns to the first
state. Since the transition from the second state to itself is forbidden, A(C)
has infinite diameter. However, the two-step transition matrix is

A2 =

(
3
4

1
2

1
4

1
2

)
,

for which we can compute

s =

√
1/4

1/2
· 1/2

3/4
=

1√
6
⇒ Λ ≤

√
6− 1√
6 + 1

.

Thus the estimate on A2 gives us a definite rate of contraction, which the
estimate from A does not.

It can be useful to use the estimate on AN even when A > 0. For example,
if we consider the Markov chain with transition matrix

A =

(
1
5

9
10

4
5

1
10

)
,

then we have

s =

√
1/5

9/10
· 1/10

4/5
=

√
2

9
· 1

8
=

1

6
⇒ Λ ≤ 5

7
≈ .714

as the rate of contraction, while considering

A2 =

(
19
25

27
100

6
25

73
100

)
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gives

s =

√
27/100

19/25
· 6/25

73/100
≈ .3418 ⇒ Λ ≤ .6582

1.3418
≈ .4906 ≈ (.7)2,

a better estimate than we obtained from considering A itself.
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