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Having spent some time discussing spectral methods and coupling tech-
niques as tools for studying the statistical properties of dynamical systems,
we turn now to a third approach, based on convex cones and the Hilbert
metric. This post is based on Will Ott’s talk from March 25.

1 Basic definitions

Let V be a vector space over the reals. Ultimately we will be most interested
in the case when V is a function space, such as L1 or BV , but for now we
make the definitions in the general context.

Definition 1 A subset C ⊂ V is a convex cone (or positive cone) if

1. C ∩ (−C) = ∅;

2. λC = C for each λ > 0;

3. C is convex; and

4. for all f, g ∈ C and α ∈ R, we have the following property: if αn → α
and g − αnf ∈ C for every n, then g − αf ∈ C ∪ {0}.

The first three conditions are very geometric and in some sense guarantee
that C “looks like a cone should look”. The last condition is more topological;
if V is a topological vector space and C ∪ {0} is a closed subset of V , then
this condition holds, but we stress that the condition itself is actually weaker
than this and is phrased without reference to any topology on V .
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Example 1 Let V = BV ([0, 1],R) be the space of all real-valued functions on
the unit interval with bounded variation, and let C = {ϕ ∈ V | ϕ ≥ 0, ϕ 6≡ 0}.
Then C is a convex cone.

We see immediately from this example that the notion of convex cone is
relevant to the sorts of questions we want to ask about invariant measures of
a dynamical system, because this set C is exactly the set of density functions
that arises when we are searching for an absolutely continuous invariant
measure.

This suggests that we will ultimately want to consider the action of some
operator L : C → C, and in particular may want to find a fixed point of this
action (for a suitable operator L). One of the most powerful methods for
finding a fixed point is to find a metric in which L acts as a contraction, and
this is accomplished by the Hilbert metric, which we now introduce.

Definition 2 Fix a convex cone C ⊂ V . Given ϕ, ψ ∈ C, let

β(ϕ, ψ) = inf{µ > 0 | µϕ− ψ ∈ C},
α(ϕ, ψ) = sup{λ > 0 | ψ − λϕ ∈ C},

(1)

with α = 0 and/or β = ∞ if the corresponding set is empty. The cone
distance between ϕ and ψ is

dC(ϕ, ψ) = log

(
β(ϕ, ψ)

α(ϕ, ψ)

)
. (2)

The distance dC is also called the Hilbert (projective) metric.

Several remarks are now in order. First we observe that although V may
be infinite-dimensional, the distance dC(ϕ, ψ) is completely determined in
terms of the two-dimensional subspace spanned by ϕ and ψ, and in particular
by the points shown in Figure 1 – in the figure, the lines 0A and 0B are the
boundary of this two-dimensional cross-section of C. The lines 0X and Y ψ
are parallel, as are the lines 0A and ψX; then we have

α =
|ψY |
|0ϕ|

and β =
|0X|
|0ϕ|

.

An alternate description of dC is available in terms of this more geometric
description. Let ` be the line through ϕ and ψ, and let A,B be the points
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Figure 1: Determining the cone distance between ϕ and ψ.

where this line intersects the boundary of C. We see from Figure 1 that the
triangles BY ψ and B0ϕ are similar, so

α =
|ψY |
|0ϕ|

=
|Bψ|
|Bϕ|

.

Furthermore, ϕ0A and ϕXψ are similar, so

β =
|0X|
|0ϕ|

= 1 +
|ϕX|
|0ϕ|

= 1 +
|ψϕ|
|Aϕ|

=
|Aψ|
|Aϕ|

.

Thus dC can be given in terms of the cross-ratio of the points ϕ, ψ,A,B:

β

α
=
|Aψ|
|Aϕ|

|Bϕ|
|Bψ|

= (ϕ, ψ;A,B).

We have
dC(ϕ, ψ) = log(ϕ, ψ;A,B). (3)

Note that it is possible that the line ` does not intersect the boundary of C
twice; this corresponds to the case when either α = 0 or β =∞ (or both) in
(1), and in this case dC(ϕ, ψ) =∞.

This situation occurs, for example, when we take V = BV ([0, 1],R) and
C as in the example above, and consider ϕ, ψ ∈ C with disjoint supports –
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that is, ϕ(x)ψ(x) = 0 for all x. In this case α = 0 and β = ∞ so the cone
distance between ϕ and ψ is infinite.

Because of this phenomenon, dC is not a true metric. Moreover, we
observe that dC is projective: dC(ϕ, λϕ) = 0 for every λ > 0.

An important property of the Hilbert metric is the following theorem, due
to Birkhoff, which states that a linear map from one convex cone to another
is a contraction whenever its image has finite diameter.

Theorem 3 Let C1 ⊂ V1 and C2 ⊂ V2 be convex cones, and let L : V1 →
V2 be a linear map such that L(C1) ⊂ C2. (This is a sort of ‘positivity’
condition.) Let

∆ = sup
ϕ̂,ψ̂∈L(C1)

dC2(ϕ̂, ψ̂).

Then for all ϕ, ψ ∈ C1, we have

dC2(Lϕ,Lψ) ≤ tanh

(
∆

4

)
dC1(ϕ, ψ), (4)

where we use the convention that tanh∞ = 1.

We also want to relate dC to a more familiar norm. Say that a norm ‖ · ‖
on V is adapted if the following is true: whenever ϕ, ψ ∈ V are such that
ϕ− ψ ∈ C and ϕ+ ψ ∈ C, we have ‖ψ‖ ≤ ‖ϕ‖.

Example 2 On BV , the L1 norm is adapted, but the BV norm is not.

The following lemma, due to Liverani, Saussol, and Vaienti, relates the
cone metric to an adapted norm.

Lemma 4 Let ‖ · ‖ be an adapted norm on V and C ⊂ V a convex cone.
Then for all ϕ, ψ ∈ C with ‖ϕ‖ = ‖ψ‖ > 0, we have

‖ϕ− ψ‖ ≤
(
edC(ϕ,ψ) − 1

)
‖ϕ‖. (5)

Convex cones and the Hilbert metric are well suited to studying nonequi-
librium open systems. Consider the following setting. Let X be a Rieman-
nian manifold, λ volume on X, and f̂i : X → X a diffeomorphism. For
m ∈ N, let F̂m = f̂m ◦ · · · ◦ f̂1. This is a nonequilibrium closed system.
(Nonequilibrium because the map changes at each time step, closed because
every point can be iterated arbitrarily many times.)
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Now consider sets Hj ⊂ X, which we interpret as a “hole” at time j. The
time-m survivor set is

Sm = X \
m⋃
i=1

F̂−1i (Hi),

the set of points that do not fall into a hole before time m. Let Fm = F̂m|Sm .
We refer to the pair (Fm, Hm) as a nonequilibrium open dynamical system.

We would like an analogue of decay of correlations for such systems. Let
ϕ0, ψ0 be two probability density functions on X, and evolve these under
(Fm, Hm). We expect that ‖ϕt‖L1(λ) < 1 because there is a positive proba-
bility of falling into a hole.

Let P̂j be the Perron–Frobenius operator for the closed system f̂j (with
respect to λ). Then to the open system fj we can associate the operator

Pj(ϕ) = P̂j(ϕ)1X\Hj
.

Definition 5 We say that (Fm, Hm) exhibits conditional memory loss in the
statistical sense if for all suitably chosen ϕ0, ψ0, we have

lim
t→∞

∥∥∥∥ ϕt
‖ϕt‖L1(λ)

− ψt
‖ψt‖L1(λ)

∥∥∥∥
L1(λ)

= 0.

The idea of this definition is that before comparing the probabilities, we
need to first condition on the event that the trajectory survives. Next time
we will investigate this property for piecewise expanding interval maps using
the Lasota–Yorke inequality, where the holes Hj are small and vary slowly.
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